Nuprl Lemma : interleaving_occurence_onto

[A:Type]
  ∀L,L1,L2:A List. ∀f1:ℕ||L1|| ⟶ ℕ||L||. ∀f2:ℕ||L2|| ⟶ ℕ||L||.
    ∀j:ℕ||L||. ((∃k:ℕ||L1||. (j (f1 k) ∈ ℤ)) ∨ (∃k:ℕ||L2||. (j (f2 k) ∈ ℤ))) 
    supposing interleaving_occurence(A;L1;L2;L;f1;f2)


Proof




Definitions occuring in Statement :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) and: P ∧ Q increasing: increasing(f;k) int_seg: {i..j-} lelt: i ≤ j < k nat: guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b subtype_rel: A ⊆B subtract: m finite': finite'(T) squash: T bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff inject: Inj(A;B;f) less_than': less_than'(a;b) surject: Surj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  member-less_than int_seg_wf length_wf nat_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf lelt_wf add-member-int_seg2 decidable__le subtract_wf intformle_wf int_formula_prop_le_lemma equal_wf interleaving_occurence_wf list_wf nsub_finite' lt_int_wf bool_wf equal-wf-T-base assert_wf less_than_wf int_seg_subtype int_seg_properties itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma le_int_wf le_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int nat_wf increasing_inj length_wf_nat decidable__equal_int non_neg_length exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis lambdaEquality dependent_functionElimination hypothesisEquality extract_by_obid isectElimination applyEquality functionExtensionality natural_numberEquality cumulativity setElimination rename dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache functionEquality universeEquality independent_functionElimination addEquality imageElimination equalityElimination inlFormation inrFormation

Latex:
\mforall{}[A:Type]
    \mforall{}L,L1,L2:A  List.  \mforall{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||.  \mforall{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.
        \mforall{}j:\mBbbN{}||L||.  ((\mexists{}k:\mBbbN{}||L1||.  (j  =  (f1  k)))  \mvee{}  (\mexists{}k:\mBbbN{}||L2||.  (j  =  (f2  k)))) 
        supposing  interleaving\_occurence(A;L1;L2;L;f1;f2)



Date html generated: 2017_10_01-AM-08_37_31
Last ObjectModification: 2017_07_26-PM-04_26_31

Theory : list!


Home Index