Nuprl Lemma : K-uforces-umonotone
∀K:mKripkeStruct. ∀fmla:mFOL(). ∀i:World.
  ∀[j:World]
    ∀a:FOAssignment(mFOL-freevars(fmla),Dom(i)). ((K-uforces(K;fmla) i a) ⊆r (K-uforces(K;fmla) j a)) supposing i ≤ j
Proof
Definitions occuring in Statement : 
K-uforces: K-uforces(K;fmla), 
K-dom: Dom(i), 
K-le: i ≤ j, 
K-world: World, 
mFO-Kripke-struct: mKripkeStruct, 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
FOAssignment: FOAssignment(vs,Dom), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
guard: {T}, 
mFO-Kripke-struct: mKripkeStruct, 
spreadn: spread4, 
K-dom: Dom(i), 
mFOL-freevars: mFOL-freevars(fmla), 
FOAssignment: FOAssignment(vs,Dom), 
mFOatomic: name(vars), 
mFOL_ind: mFOL_ind, 
pi1: fst(t), 
pi2: snd(t), 
K-le: i ≤ j, 
K-sat: i,a |= fmla, 
mFOL-abstract: mFOL-abstract(fmla), 
K-struct: K-struct(K;i), 
FOSatWith: Dom,S,a |= fmla, 
AbstractFOAtomic: AbstractFOAtomic(n;L), 
and: P ∧ Q, 
K-world: World, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
istype: istype(T), 
mFOconnect: mFOconnect(knd;left;right), 
not: ¬A, 
false: False, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
l_contains: A ⊆ B, 
mFOquant: mFOquant(isall;var;body), 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
exists: ∃x:A. B[x]
Lemmas referenced : 
mFOL_wf, 
mFO-Kripke-struct_wf, 
mFOL-induction, 
all_wf, 
K-world_wf, 
uall_wf, 
isect_wf, 
K-le_wf, 
FOAssignment_wf, 
mFOL-freevars_wf, 
K-dom_wf, 
subtype_rel_wf, 
K-uforces_wf, 
K-assignment_subtype, 
l_contains_weakening, 
K_uforces_atomic_lemma, 
istype-void, 
mFOatomic_wf, 
list_wf, 
istype-atom, 
K_uforces_connect_lemma, 
mFOconnect_wf, 
K_uforces_quant_lemma, 
mFOquant_wf, 
istype-int, 
bool_wf, 
subtype_rel_self, 
list-subtype, 
map_wf, 
l_member_wf, 
subtype_rel_dep_function, 
remove-repeats_wf, 
int-deq_wf, 
subtype_rel_sets, 
member-remove-repeats, 
K-le_reflexive, 
val-union-l-union, 
int-valueall-type, 
union-contains, 
union-contains2, 
eq_atom_wf, 
equal-wf-base, 
atom_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_atom, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
subtype_rel_product, 
subtype_rel_union, 
K-le_transitivity, 
l_all_iff, 
filter_wf5, 
eq_int_wf, 
btrue_wf, 
bool_subtype_base, 
update-assignment_wf, 
K-dom_subtype, 
K-uforces-monotone
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
dependent_functionElimination, 
intEquality, 
inhabitedIsType, 
independent_functionElimination, 
isect_memberFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
axiomEquality, 
functionIsTypeImplies, 
isectIsTypeImplies, 
functionIsType, 
isectIsType, 
productElimination, 
closedConclusion, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
setElimination, 
rename, 
setIsType, 
equalityIsType1, 
tokenEquality, 
baseApply, 
baseClosed, 
atomEquality, 
equalityIsType4, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
instantiate, 
universeEquality
Latex:
\mforall{}K:mKripkeStruct.  \mforall{}fmla:mFOL().  \mforall{}i:World.
    \mforall{}[j:World]
        \mforall{}a:FOAssignment(mFOL-freevars(fmla),Dom(i))
            ((K-uforces(K;fmla)  i  a)  \msubseteq{}r  (K-uforces(K;fmla)  j  a)) 
        supposing  i  \mleq{}  j
Date html generated:
2019_10_16-AM-11_46_19
Last ObjectModification:
2018_10_16-PM-01_25_20
Theory : minimal-first-order-logic
Home
Index