Nuprl Lemma : K-uforces_wf
∀[K:mKripkeStruct]. ∀[fmla:mFOL()].  (K-uforces(K;fmla) ∈ i:World ⟶ FOAssignment(mFOL-freevars(fmla),Dom(i)) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
K-uforces: K-uforces(K;fmla), 
K-dom: Dom(i), 
K-world: World, 
mFO-Kripke-struct: mKripkeStruct, 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
FOAssignment: FOAssignment(vs,Dom), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
mFOatomic: name(vars), 
mFOL_size: mFOL_size(p), 
spreadn: spread3, 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
mFOconnect: mFOconnect(knd;left;right), 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL_ind: mFOL_ind, 
mFOquant: mFOquant(isall;var;body), 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
l_contains: A ⊆ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
le_wf, 
subtype_rel_self, 
mFOL-ext, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
atom_subtype_base, 
K_uforces_atomic_lemma, 
K-sat_wf, 
mFOatomic_wf, 
FOAssignment_wf, 
mFOL-freevars_wf, 
K-dom_wf, 
K-world_wf, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_atom, 
mFOL_size_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
K_uforces_connect_lemma, 
K-assignment_subtype, 
K-le_reflexive, 
mFOconnect_wf, 
val-union-l-union, 
int-deq_wf, 
int-valueall-type, 
union-contains, 
union-contains2, 
or_wf, 
uall_wf, 
isect_wf, 
K-le_wf, 
K_uforces_quant_lemma, 
all_wf, 
update-assignment_wf, 
mFOquant_wf, 
btrue_wf, 
exists_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
eq_int_wf, 
bfalse_wf, 
nat_wf, 
mFOL_wf, 
mFO-Kripke-struct_wf, 
l_all_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
productElimination, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
hypothesis_subsumption, 
promote_hyp, 
tokenEquality, 
equalityElimination, 
cumulativity, 
atomEquality, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
imageElimination, 
productEquality, 
intEquality, 
functionEquality, 
equalityIsType1, 
setIsType, 
addEquality
Latex:
\mforall{}[K:mKripkeStruct].  \mforall{}[fmla:mFOL()].
    (K-uforces(K;fmla)  \mmember{}  i:World  {}\mrightarrow{}  FOAssignment(mFOL-freevars(fmla),Dom(i))  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_10_16-AM-11_45_48
Last ObjectModification:
2018_10_16-AM-11_03_43
Theory : minimal-first-order-logic
Home
Index