Nuprl Lemma : q-constraint-times
∀[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[a:ℚ]. ∀[k:ℕ]. ∀[y:ℚ List].
  (q-rel(r;q-linear(k;j.a * (x j);y))) supposing 
     (q-rel(r;q-linear(k;j.x j;y)) and 
     ((r = 0 ∈ ℤ) ∨ 0 < a ∨ ((0 ≤ a) ∧ (r = 1 ∈ ℤ))) and 
     (k ≤ ||y||))
Proof
Definitions occuring in Statement : 
q-rel: q-rel(r;x)
, 
q-linear: q-linear(k;i.X[i];y)
, 
qle: r ≤ s
, 
qless: r < s
, 
qmul: r * s
, 
rationals: ℚ
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
q-rel: q-rel(r;x)
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
cand: A c∧ B
, 
not: ¬A
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
Lemmas referenced : 
q-rel_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
q-linear-times, 
nat_wf, 
iff_weakening_equal, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base-T, 
q-linear_wf, 
qmul_wf, 
qle_witness, 
int-subtype-rationals, 
qle_wf, 
qless_witness, 
qless_wf, 
equal_wf, 
ifthenelse_wf, 
eq_int_wf, 
or_wf, 
equal-wf-base, 
le_wf, 
length_wf, 
list_wf, 
bool_wf, 
assert_wf, 
qmul_comm_qrng, 
bnot_wf, 
not_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
qmul_preserves_qle2, 
qle_weakening_lt_qorder, 
qmul-positive, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
qmul_zero_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
intEquality, 
sqequalRule, 
functionExtensionality, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
because_Cache, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality, 
productEquality, 
setElimination, 
rename, 
functionEquality, 
applyLambdaEquality, 
voidElimination, 
promote_hyp, 
dependent_pairFormation, 
voidEquality, 
computeAll, 
baseApply, 
closedConclusion, 
inlFormation, 
independent_pairFormation, 
minusEquality, 
equalityElimination, 
impliesFunctionality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r:\mBbbZ{}].  \mforall{}[a:\mBbbQ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[y:\mBbbQ{}  List].
    (q-rel(r;q-linear(k;j.a  *  (x  j);y)))  supposing 
          (q-rel(r;q-linear(k;j.x  j;y))  and 
          ((r  =  0)  \mvee{}  0  <  a  \mvee{}  ((0  \mleq{}  a)  \mwedge{}  (r  =  1)))  and 
          (k  \mleq{}  ||y||))
Date html generated:
2018_05_22-AM-00_19_08
Last ObjectModification:
2017_07_26-PM-06_53_53
Theory : rationals
Home
Index