Nuprl Lemma : q-constraint-times

[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[a:ℚ]. ∀[k:ℕ]. ∀[y:ℚ List].
  (q-rel(r;q-linear(k;j.a (x j);y))) supposing 
     (q-rel(r;q-linear(k;j.x j;y)) and 
     ((r 0 ∈ ℤ) ∨ 0 < a ∨ ((0 ≤ a) ∧ (r 1 ∈ ℤ))) and 
     (k ≤ ||y||))


Proof




Definitions occuring in Statement :  q-rel: q-rel(r;x) q-linear: q-linear(k;i.X[i];y) qle: r ≤ s qless: r < s qmul: s rationals: length: ||as|| list: List nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q or: P ∨ Q sq_type: SQType(T) all: x:A. B[x] q-rel: q-rel(r;x) ifthenelse: if then else fi  bool: 𝔹 nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top cand: c∧ B not: ¬A unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff
Lemmas referenced :  q-rel_wf squash_wf true_wf rationals_wf q-linear-times nat_wf iff_weakening_equal subtype_base_sq int_subtype_base equal-wf-base-T q-linear_wf qmul_wf qle_witness int-subtype-rationals qle_wf qless_witness qless_wf equal_wf ifthenelse_wf eq_int_wf or_wf equal-wf-base le_wf length_wf list_wf bool_wf assert_wf qmul_comm_qrng bnot_wf not_wf nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf qmul_preserves_qle2 qle_weakening_lt_qorder qmul-positive uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot qmul_zero_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality sqequalRule functionExtensionality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination unionElimination instantiate cumulativity dependent_functionElimination because_Cache lambdaFormation axiomEquality isect_memberEquality productEquality setElimination rename functionEquality applyLambdaEquality voidElimination promote_hyp dependent_pairFormation voidEquality computeAll baseApply closedConclusion inlFormation independent_pairFormation minusEquality equalityElimination impliesFunctionality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r:\mBbbZ{}].  \mforall{}[a:\mBbbQ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[y:\mBbbQ{}  List].
    (q-rel(r;q-linear(k;j.a  *  (x  j);y)))  supposing 
          (q-rel(r;q-linear(k;j.x  j;y))  and 
          ((r  =  0)  \mvee{}  0  <  a  \mvee{}  ((0  \mleq{}  a)  \mwedge{}  (r  =  1)))  and 
          (k  \mleq{}  ||y||))



Date html generated: 2018_05_22-AM-00_19_08
Last ObjectModification: 2017_07_26-PM-06_53_53

Theory : rationals


Home Index