Nuprl Lemma : qmin-list-unique

[L:ℚ List]. ∀[a:ℚ].  uiff(qmin-list(L) a ∈ ℚ;(∀b∈L.a ≤ b)) supposing (a ∈ L)


Proof




Definitions occuring in Statement :  qmin-list: qmin-list(L) qle: r ≤ s rationals: l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a implies:  Q or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B decidable: Dec(P) not: ¬A rev_implies:  Q prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than: a < b squash: T l_member: (x ∈ l) l_exists: (∃x∈L. P[x]) ge: i ≥  cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  qmin-list-bounds rationals_wf list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf qle_weakening_eq_qorder qle_witness select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf int_formula_prop_less_lemma int_seg_wf qmin-list_wf lelt_wf qle_wf nat_properties qle_antisymmetry l_all_wf2 l_member_wf squash_wf true_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination unionElimination sqequalRule productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality lambdaFormation setElimination rename natural_numberEquality addEquality independent_pairFormation independent_isectElimination applyEquality because_Cache minusEquality equalityTransitivity equalitySymmetry lambdaEquality dependent_pairFormation int_eqEquality intEquality computeAll imageElimination dependent_set_memberEquality setEquality independent_pairEquality axiomEquality hyp_replacement imageMemberEquality baseClosed

Latex:
\mforall{}[L:\mBbbQ{}  List].  \mforall{}[a:\mBbbQ{}].    uiff(qmin-list(L)  =  a;(\mforall{}b\mmember{}L.a  \mleq{}  b))  supposing  (a  \mmember{}  L)



Date html generated: 2018_05_21-PM-11_55_56
Last ObjectModification: 2017_07_26-PM-06_46_33

Theory : rationals


Home Index