Nuprl Lemma : qv-convex-lower-half

[r:ℚ]. ∀[v:ℚ List].  qv-convex(p.(dimension(p) dimension(v) ∈ ℤ) ∧ (qdot(v;p) ≤ r))


Proof




Definitions occuring in Statement :  qv-convex: qv-convex(p.S[p]) qv-dim: dimension(as) qdot: qdot(as;bs) qle: r ≤ s rationals: list: List uall: [x:A]. B[x] and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qv-convex: qv-convex(p.S[p]) all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) qsub: s qge: a ≥ b
Lemmas referenced :  dim-qv-add qv-mul_wf subtype_rel_list rationals_wf top_wf istype-void qsub_wf dim-qv-mul equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal qle_wf qdot-linear qv-dim_wf set_subtype_base le_wf int_subtype_base qdot_wf istype-int qle_witness qv-add_wf qadd_wf qdot-linear2 qmul_preserves_qle2 qmul_wf int-subtype-rationals qadd_preserves_qle qadd_comm_q qadd_ac_1_q qinverse_q mon_ident_q qle_functionality_wrt_implies qadd_functionality_wrt_qle qle_weakening_eq_qorder qle_reflexivity qmul_over_plus_qrng qmul_over_minus_qrng qmul_one_qrng qmul_comm_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality because_Cache hypothesis applyEquality independent_isectElimination lambdaEquality_alt isect_memberEquality_alt voidElimination inhabitedIsType natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeIsType instantiate universeEquality intEquality imageMemberEquality baseClosed independent_functionElimination independent_pairFormation productIsType equalityIstype sqequalBase dependent_functionElimination independent_pairEquality axiomEquality functionIsTypeImplies isectIsTypeImplies promote_hyp minusEquality

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[v:\mBbbQ{}  List].    qv-convex(p.(dimension(p)  =  dimension(v))  \mwedge{}  (qdot(v;p)  \mleq{}  r))



Date html generated: 2020_05_20-AM-09_27_46
Last ObjectModification: 2019_11_27-PM-01_44_57

Theory : rationals


Home Index