Nuprl Lemma : qv-convex-lower-half
∀[r:ℚ]. ∀[v:ℚ List].  qv-convex(p.(dimension(p) = dimension(v) ∈ ℤ) ∧ (qdot(v;p) ≤ r))
Proof
Definitions occuring in Statement : 
qv-convex: qv-convex(p.S[p])
, 
qv-dim: dimension(as)
, 
qdot: qdot(as;bs)
, 
qle: r ≤ s
, 
rationals: ℚ
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qv-convex: qv-convex(p.S[p])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qsub: r - s
, 
qge: a ≥ b
Lemmas referenced : 
dim-qv-add, 
qv-mul_wf, 
subtype_rel_list, 
rationals_wf, 
top_wf, 
istype-void, 
qsub_wf, 
dim-qv-mul, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
qle_wf, 
qdot-linear, 
qv-dim_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
qdot_wf, 
istype-int, 
qle_witness, 
qv-add_wf, 
qadd_wf, 
qdot-linear2, 
qmul_preserves_qle2, 
qmul_wf, 
int-subtype-rationals, 
qadd_preserves_qle, 
qadd_comm_q, 
qadd_ac_1_q, 
qinverse_q, 
mon_ident_q, 
qle_functionality_wrt_implies, 
qadd_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
qle_reflexivity, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qmul_one_qrng, 
qmul_comm_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
inhabitedIsType, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate, 
universeEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
sqequalBase, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
functionIsTypeImplies, 
isectIsTypeImplies, 
promote_hyp, 
minusEquality
Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[v:\mBbbQ{}  List].    qv-convex(p.(dimension(p)  =  dimension(v))  \mwedge{}  (qdot(v;p)  \mleq{}  r))
Date html generated:
2020_05_20-AM-09_27_46
Last ObjectModification:
2019_11_27-PM-01_44_57
Theory : rationals
Home
Index