Nuprl Lemma : implies-isometry
∀rv:InnerProductSpace. ∀f:Point ⟶ Point. ∀r:{r:ℝ| r0 < r} . ∀N:{2...}.
  ((∀x,y:Point.  (x ≡ y ⇒ f x ≡ f y))
  ⇒ (∀x,y:Point.  ((||x - y|| = r) ⇒ (||f x - f y|| ≤ r)))
  ⇒ (∀x,y:Point.  ((||x - y|| = (r(N) * r)) ⇒ ((r(N) * r) ≤ ||f x - f y||)))
  ⇒ is-isometry(rv;f))
Proof
Definitions occuring in Statement : 
is-isometry: is-isometry(rv;f), 
rv-norm: ||x||, 
rv-sub: x - y, 
inner-product-space: InnerProductSpace, 
rleq: x ≤ y, 
rless: x < y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
ss-eq: x ≡ y, 
ss-point: Point, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
int_upper: {i...}, 
so_apply: x[s], 
uimplies: b supposing a, 
is-isometry: is-isometry(rv;f), 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rv-sub: x - y, 
rv-minus: -x, 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top, 
stable: Stable{P}, 
not: ¬A, 
or: P ∨ Q, 
false: False, 
rational-approx: (x within 1/n), 
int_nzero: ℤ-o, 
nat_plus: ℕ+, 
nequal: a ≠ b ∈ T , 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
real: ℝ, 
rneq: x ≠ y, 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
rge: x ≥ y, 
rdiv: (x/y), 
int-to-real: r(n), 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
sq_stable: SqStable(P), 
le: A ≤ B, 
subtract: n - m, 
cand: A c∧ B, 
rgt: x > y, 
rsub: x - y, 
rnonneg: rnonneg(x), 
rleq: x ≤ y, 
rv-isometry: Isometry(f)
Lemmas referenced : 
implies-isometry-lemma1, 
all_wf, 
ss-point_wf, 
req_wf, 
rv-norm_wf, 
rv-sub_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
rmul_wf, 
rv-ip_wf, 
inner-product-space_subtype, 
ss-eq_wf, 
int_upper_wf, 
rless_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
implies-isometry-lemma5, 
rv-0_wf, 
rv-orthogonal_wf, 
rv-add_wf, 
exists_wf, 
rv-orthogonal-iff, 
rv-mul_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
uiff_transitivity, 
ss-eq_functionality, 
rv-mul-1-add, 
ss-eq_weakening, 
rv-mul_functionality, 
rv-mul0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
stable_req, 
false_wf, 
or_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
req-iff-rabs-rleq, 
nat_plus_wf, 
equal_wf, 
small-reciprocal-real, 
rational-approx-property, 
rabs-difference-bound-rleq, 
int-rdiv_wf, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
rdiv_wf, 
rless-int, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
member_rooint_lemma, 
rsub_wf, 
subtract_wf, 
rmul_preserves_rless, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
req_weakening, 
rneq-int, 
equal-wf-T-base, 
rmul-one, 
rminus_wf, 
itermMinus_wf, 
rmul_preserves_req, 
less_than_wf, 
int_term_value_add_lemma, 
rleq_functionality, 
rsub_functionality, 
int-rdiv-req, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rless_functionality, 
req_transitivity, 
rmul_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rmul-rinv, 
rmul-rinv3, 
rsub-int, 
radd_functionality, 
radd-int, 
squash_wf, 
true_wf, 
rminus-int, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req_functionality, 
rless-iff4, 
int_upper_properties, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_le_int, 
eqtt_to_assert, 
bool_wf, 
le_int_wf, 
iff_weakening_equal, 
imax_unfold, 
multiply_nat_plus, 
imax_nat_plus, 
mul_nat_plus, 
rleq-int-fractions, 
le_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
sq_stable__less_than, 
imax_ub, 
imax_wf, 
decidable__equal_int, 
less_than_transitivity1, 
le-add-cancel, 
add-swap, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-minus, 
minus-add, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
subtype_rel_sets, 
rooint_wf, 
i-member_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_rless, 
int_term_value_subtract_lemma, 
int_term_value_minus_lemma, 
rleq-int, 
rmul_preserves_rleq, 
rmul-rdiv-cancel2, 
rmul-distrib, 
rmul_over_rminus, 
rminus_functionality, 
uiff_transitivity3, 
sq_stable__rless, 
rmul-is-positive, 
rmul-zero-both, 
less_than'_wf, 
rmul_preserves_rleq2, 
radd_comm, 
rmul-assoc, 
rmul_comm, 
rmul-ac, 
rccint_wf, 
set_wf, 
member_rccint_lemma, 
radd-preserves-rleq, 
radd-ac, 
radd-rminus-both, 
radd-zero-both, 
radd-rminus-assoc, 
rless_transitivity1, 
radd_functionality_wrt_rleq, 
rleq_transitivity, 
radd_functionality_wrt_rless2, 
rleq_antisymmetry, 
rv-norm-nonneg, 
not-rless, 
rv-norm-is-zero, 
rv-sub-is-zero, 
rv-norm_functionality, 
rv-sub_functionality, 
rv-sub-same, 
rv-norm0, 
rv-minus_wf, 
req_witness, 
rv-add_functionality, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
ss-eq_transitivity, 
rv-add-swap, 
rv-add-comm, 
rv-mul-add, 
rv-add-0, 
rv-mul-add-1-alt
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
instantiate, 
independent_isectElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productElimination, 
minusEquality, 
approximateComputation, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
allFunctionality, 
multiplyEquality, 
int_eqEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
inrFormation, 
promote_hyp, 
addEquality, 
imageMemberEquality, 
imageElimination, 
cumulativity, 
equalityElimination, 
universeEquality, 
applyLambdaEquality, 
computeAll, 
inlFormation, 
addLevel, 
levelHypothesis, 
axiomEquality, 
independent_pairEquality, 
isect_memberFormation, 
functionExtensionality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point  {}\mrightarrow{}  Point.  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .  \mforall{}N:\{2...\}.
    ((\mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point.    ((||x  -  y||  =  r)  {}\mRightarrow{}  (||f  x  -  f  y||  \mleq{}  r)))
    {}\mRightarrow{}  (\mforall{}x,y:Point.    ((||x  -  y||  =  (r(N)  *  r))  {}\mRightarrow{}  ((r(N)  *  r)  \mleq{}  ||f  x  -  f  y||)))
    {}\mRightarrow{}  is-isometry(rv;f))
Date html generated:
2018_05_22-PM-09_37_59
Last ObjectModification:
2018_05_18-PM-00_39_55
Theory : inner!product!spaces
Home
Index