Nuprl Lemma : p-shift-mul

[p:ℕ+]. ∀[a:p-adics(p)]. ∀[k:ℕ+].  p^k(p) p-shift(p;a;k) a ∈ p-adics(p) supposing (a k) 0 ∈ ℤ


Proof




Definitions occuring in Statement :  p-shift: p-shift(p;a;k) p-int: k(p) p-mul: y p-adics: p-adics(p) exp: i^n nat_plus: + uimplies: supposing a uall: [x:A]. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: p-adics: p-adics(p) subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) p-shift: p-shift(p;a;k) p-int: k(p) p-mul: y decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  nat: iff: ⇐⇒ Q rev_implies:  Q int_upper: {i...} sq_type: SQType(T) guard: {T} eqmod: a ≡ mod m divides: a lelt: i ≤ j < k
Lemmas referenced :  equal-wf-T-base int_seg_wf exp_wf2 nat_plus_wf p-adics_wf p-adics-equal p-mul_wf p-int_wf nat_plus_subtype_nat p-shift_wf p-reduce_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf exp_step mul_nzero subtype_rel_sets nequal_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base exp_wf3 subtract_wf decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf eqmod_functionality_wrt_eqmod p-reduce-eqmod eqmod_weakening multiply_functionality_wrt_eqmod p-adic-property subtype_base_sq set_subtype_base lelt_wf decidable__equal_int multiply-is-int-iff subtract-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf exp_wf_nat_plus int_seg_properties div-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin intEquality applyEquality setElimination rename hypothesisEquality lambdaEquality natural_numberEquality because_Cache sqequalRule baseClosed isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination productElimination lambdaFormation multiplyEquality divideEquality dependent_set_memberEquality addEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation setEquality instantiate cumulativity universeEquality pointwiseFunctionality promote_hyp baseApply closedConclusion applyLambdaEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].  \mforall{}[k:\mBbbN{}\msupplus{}].    p\^{}k(p)  *  p-shift(p;a;k)  =  a  supposing  (a  k)  =  0



Date html generated: 2018_05_21-PM-03_21_52
Last ObjectModification: 2018_05_19-AM-08_19_07

Theory : rings_1


Home Index