Nuprl Lemma : p-shift-mul
∀[p:ℕ+]. ∀[a:p-adics(p)]. ∀[k:ℕ+].  p^k(p) * p-shift(p;a;k) = a ∈ p-adics(p) supposing (a k) = 0 ∈ ℤ
Proof
Definitions occuring in Statement : 
p-shift: p-shift(p;a;k)
, 
p-int: k(p)
, 
p-mul: x * y
, 
p-adics: p-adics(p)
, 
exp: i^n
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
p-adics: p-adics(p)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
p-shift: p-shift(p;a;k)
, 
p-int: k(p)
, 
p-mul: x * y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_upper: {i...}
, 
sq_type: SQType(T)
, 
guard: {T}
, 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
lelt: i ≤ j < k
Lemmas referenced : 
equal-wf-T-base, 
int_seg_wf, 
exp_wf2, 
nat_plus_wf, 
p-adics_wf, 
p-adics-equal, 
p-mul_wf, 
p-int_wf, 
nat_plus_subtype_nat, 
p-shift_wf, 
p-reduce_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
less_than_wf, 
exp_step, 
mul_nzero, 
subtype_rel_sets, 
nequal_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
exp_wf3, 
subtract_wf, 
decidable__le, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
eqmod_functionality_wrt_eqmod, 
p-reduce-eqmod, 
eqmod_weakening, 
multiply_functionality_wrt_eqmod, 
p-adic-property, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
decidable__equal_int, 
multiply-is-int-iff, 
subtract-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
false_wf, 
exp_wf_nat_plus, 
int_seg_properties, 
div-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
lambdaFormation, 
multiplyEquality, 
divideEquality, 
dependent_set_memberEquality, 
addEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
setEquality, 
instantiate, 
cumulativity, 
universeEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
applyLambdaEquality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].  \mforall{}[k:\mBbbN{}\msupplus{}].    p\^{}k(p)  *  p-shift(p;a;k)  =  a  supposing  (a  k)  =  0
Date html generated:
2018_05_21-PM-03_21_52
Last ObjectModification:
2018_05_19-AM-08_19_07
Theory : rings_1
Home
Index