Nuprl Lemma : oal_lk_merge_1

s:LOSet. ∀g:AbDMon. ∀ps,qs:|oal(s;g)|.
  ((¬(ps 00 ∈ |oal(s;g)|))
   (qs 00 ∈ |oal(s;g)|))
   ((ps ++ qs) 00 ∈ |oal(s;g)|))
   (lk(ps) <lk(qs))
   (lk(ps ++ qs) lk(qs) ∈ |s|))


Proof




Definitions occuring in Statement :  oal_lk: lk(ps) oal_merge: ps ++ qs oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_lt: a <b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q prop: loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet so_apply: x[s] guard: {T} oal_nil: 00 not: ¬A false: False abdmonoid: AbDMon dmon: DMon mon: Mon set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set oal_lk: lk(ps) top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q infix_ap: y respects-equality: respects-equality(S;T)
Lemmas referenced :  oalist_cases_a all_wf set_car_wf oalist_wf not_wf equal_wf oal_nil_wf oal_merge_wf2 set_lt_wf oal_lk_wf abdmonoid_wf loset_wf istype-void cons_in_oalist grp_id_wf istype-assert before_wf map_wf set_prod_wf dset_of_mon_wf grp_car_wf reduce_hd_cons_lemma oal_merge_conses_lemma set_blt_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf eqtt_to_assert assert_of_set_lt iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot grp_eq_wf grp_op_wf assert_of_mon_eq oal_merge_wf cons_wf respects-equality-oalist2 respects-equality-oalist1 set_lt_transitivity_2 set_leq_weakening_lt set_lt_irreflexivity set_lt_complement
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt isectElimination hypothesis applyEquality because_Cache functionEquality setElimination rename independent_functionElimination inhabitedIsType universeIsType voidElimination functionIsType equalityIstype equalityTransitivity equalitySymmetry productElimination isect_memberEquality_alt unionElimination equalityElimination baseClosed independent_isectElimination independent_pairFormation productEquality independent_pairEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps,qs:|oal(s;g)|.
    ((\mneg{}(ps  =  00))
    {}\mRightarrow{}  (\mneg{}(qs  =  00))
    {}\mRightarrow{}  (\mneg{}((ps  ++  qs)  =  00))
    {}\mRightarrow{}  (lk(ps)  <s  lk(qs))
    {}\mRightarrow{}  (lk(ps  ++  qs)  =  lk(qs)))



Date html generated: 2019_10_16-PM-01_08_06
Last ObjectModification: 2018_11_27-AM-11_32_22

Theory : polynom_2


Home Index