Nuprl Lemma : Accum-loc-class-as-loop-class2

[Info,B,A:Type]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)].
  (loop-class2((f X);init) Accum-loc-class(f;init;X) ∈ EClass(B))


Proof




Definitions occuring in Statement :  Accum-loc-class: Accum-loc-class(f;init;X) loop-class2: loop-class2(X;init) eclass1: (f X) eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  es-causl-swellfnd event-ordering+_subtype nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf es-E_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf equal_wf bag_wf bag-combine_wf class-ap_wf bag-map_wf es-loc_wf Accum-loc-class_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul eclass_wf event-ordering+_wf Id_wf primed-class-opt_functionality loop-class2_wf eclass1_wf primed-class-opt_wf bag-combine-map single-bag_wf iff_weakening_equal squash_wf true_wf bag-combine-single-right-as-map eta_conv

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].
    (loop-class2((f  o  X);init)  =  Accum-loc-class(f;init;X))



Date html generated: 2015_07_22-PM-00_11_15
Last ObjectModification: 2015_02_04-PM-04_41_25

Home Index