Nuprl Lemma : Accum-loc-class-as-loop-class2
∀[Info,B,A:Type]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)].
  (loop-class2((f o X);init) = Accum-loc-class(f;init;X) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
Accum-loc-class: Accum-loc-class(f;init;X)
, 
loop-class2: loop-class2(X;init)
, 
eclass1: (f o X)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Lemmas : 
es-causl-swellfnd, 
event-ordering+_subtype, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
es-E_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
equal_wf, 
bag_wf, 
bag-combine_wf, 
class-ap_wf, 
bag-map_wf, 
es-loc_wf, 
Accum-loc-class_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
eclass_wf, 
event-ordering+_wf, 
Id_wf, 
primed-class-opt_functionality, 
loop-class2_wf, 
eclass1_wf, 
primed-class-opt_wf, 
bag-combine-map, 
single-bag_wf, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
bag-combine-single-right-as-map, 
eta_conv
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].
    (loop-class2((f  o  X);init)  =  Accum-loc-class(f;init;X))
Date html generated:
2015_07_22-PM-00_11_15
Last ObjectModification:
2015_02_04-PM-04_41_25
Home
Index