Nuprl Lemma : primed-class-opt_functionality

[Info,B:Type]. ∀[init:Id ─→ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[X,Y:EClass(B)].
  Prior(X)?init(e) Prior(Y)?init(e) ∈ bag(B) supposing ∀e1:E. ((e1 < e)  (X(e1) Y(e1) ∈ bag(B)))


Proof




Definitions occuring in Statement :  primed-class-opt: Prior(X)?b class-ap: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causl: (e < e') es-E: E Id: Id uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf all_wf es-causl_wf bag_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-E_wf event-ordering+_subtype class-ap_wf eclass_wf Id_wf es-interface-subtype_rel2 top_wf es-first_wf2 bool_wf eqtt_to_assert es-loc_wf uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot ifthenelse_wf squash_wf true_wf es-pred_wf es-pred-locl es-causl_weakening es-causl_transitivity2 es-causle_weakening_locl es-le_weakening iff_weakening_equal lt_int_wf bag-size_wf assert_of_lt_int bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot primed-class-opt_wf primed-class-opt-cases

Latex:
\mforall{}[Info,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[X,Y:EClass(B)].
    Prior(X)?init(e)  =  Prior(Y)?init(e)  supposing  \mforall{}e1:E.  ((e1  <  e)  {}\mRightarrow{}  (X(e1)  =  Y(e1)))



Date html generated: 2015_07_21-PM-02_30_39
Last ObjectModification: 2015_02_04-PM-05_28_55

Home Index