Nuprl Lemma : es-closed-open-interval-decomp-mem

[Info:Type]. ∀[es:EO+(Info)]. ∀[e1,e2,e:E].
  ([e1;e2) ([e1;e) [e;e2)) ∈ (E List)) supposing (e1 ≤loc e  and e ≤loc e2 )


Proof




Definitions occuring in Statement :  event-ordering+: EO+(Info) es-closed-open-interval: [e;e') es-le: e ≤loc e'  es-E: E append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf es-le_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul event-ordering+_subtype es-E_wf event-ordering+_wf es-closed-open-interval-decomp-last es-locl_transitivity1 append_assoc list_wf append_wf es-closed-open-interval_wf es-pred_wf es-locl-first assert_elim btrue_neq_bfalse assert_wf es-first_wf2 es-pred-causl es-le-pred cons_wf nil_wf squash_wf true_wf iff_weakening_equal append-nil subtype_rel_list top_wf es-closed-open-interval-nil
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e1,e2,e:E].
    ([e1;e2)  =  ([e1;e)  @  [e;e2)))  supposing  (e1  \mleq{}loc  e    and  e  \mleq{}loc  e2  )



Date html generated: 2015_07_17-PM-00_06_31
Last ObjectModification: 2015_02_04-PM-05_38_34

Home Index