Nuprl Lemma : es-interface-predecessors-step-sq
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[e:E].
  (≤(X)(e) ~ if e ∈b prior(X) then ≤(X)(prior(X)(e)) else [] fi  @ if e ∈b X then [e] else [] fi )
Proof
Definitions occuring in Statement : 
es-prior-interface: prior(X)
, 
es-interface-predecessors: ≤(X)(e)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
es-E_wf, 
event-ordering+_subtype, 
eclass_wf, 
top_wf, 
event-ordering+_wf, 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
equal_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
es-interface-predecessors-cases, 
in-eclass_wf, 
es-prior-interface_wf0, 
es-interface-subtype_rel2, 
subtype_top, 
bool_wf, 
eqtt_to_assert, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
list_ind_nil_lemma, 
es-prior-interface-cases-sq, 
es-first_wf2, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
append_back_nil, 
es-E-interface_wf, 
Id_wf, 
es-loc_wf, 
es-pred_wf, 
es-interface-predecessors_wf, 
es-pred-locl, 
es-causl_weakening, 
eclass-val_wf2, 
es-prior-interface_wf, 
es-interface-predecessors-nil
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    (\mleq{}(X)(e)  \msim{}  if  e  \mmember{}\msubb{}  prior(X)  then  \mleq{}(X)(prior(X)(e))  else  []  fi    @  if  e  \mmember{}\msubb{}  X  then  [e]  else  []  fi  )
Date html generated:
2015_07_21-PM-03_32_48
Last ObjectModification:
2015_01_27-PM-06_40_03
Home
Index