Nuprl Lemma : assert-C_TYPE_eq
∀[a,b:C_TYPE()].  uiff(↑C_TYPE_eq(a;b);a = b ∈ C_TYPE())
Proof
Definitions occuring in Statement : 
C_TYPE_eq: C_TYPE_eq(a;b)
, 
C_TYPE: C_TYPE()
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Lemmas : 
C_TYPE-induction, 
uiff_wf, 
assert_wf, 
C_Struct?_wf, 
bool_wf, 
eqtt_to_assert, 
eq_int_wf, 
length_wf, 
C_Struct-fields_wf, 
assert_of_eq_int, 
bl-all_wf, 
int_seg_wf, 
upto_wf, 
l_member_wf, 
eq_atom_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity1, 
le_weakening, 
assert_of_eq_atom, 
C_TYPE_eq_fun_wf, 
equal_wf, 
C_Struct_wf, 
false_wf, 
btrue_wf, 
and_wf, 
C_TYPE_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
equal-wf-T-base, 
assert_witness, 
l_all_wf2, 
list_wf, 
C_Array?_wf, 
C_Array_wf, 
nat_wf, 
C_Pointer?_wf, 
C_Pointer_wf, 
all_wf, 
squash_wf, 
true_wf, 
list_extensionality, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
less_than_wf, 
assert-bl-all, 
length_upto, 
length_wf_nat, 
lelt_wf, 
select-upto, 
equal-wf-base, 
atom_subtype_base, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
list_subtype_base, 
product_subtype_base, 
C_TYPE_subtype_base, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
subtype_top, 
equal-wf-base-T, 
pi2_wf, 
C_Array-length_wf, 
C_Array-elems_wf, 
le_wf, 
C_Pointer-to_wf
\mforall{}[a,b:C\_TYPE()].    uiff(\muparrow{}C\_TYPE\_eq(a;b);a  =  b)
Date html generated:
2015_07_17-AM-07_42_51
Last ObjectModification:
2015_01_27-AM-09_47_56
Home
Index