Nuprl Lemma : bm_min_wf

[T,Key:Type]. ∀[m:binary_map(T;Key)].  bm_min(m) ∈ Key × supposing ↑bm_T?(m)


Proof




Definitions occuring in Statement :  bm_min: bm_min(m) bm_T?: bm_T?(v) binary_map: binary_map(T;Key) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf assert_wf bm_T?_wf le_wf binary_map_size_wf int_seg_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties binary_map-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom not-le-2 subtract-is-less lelt_wf binary_map_case_E binary_map_case_T true_wf decidable__lt not-equal-2 le-add-cancel-alt sq_stable__le add-mul-special zero-mul nat_wf binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    bm\_min(m)  \mmember{}  Key  \mtimes{}  T  supposing  \muparrow{}bm\_T?(m)



Date html generated: 2015_07_17-AM-08_19_11
Last ObjectModification: 2015_01_27-PM-00_37_39

Home Index