Nuprl Lemma : add-nat-missing_wf
∀[i:ℕ]. ∀[s:nat-missing-type()].  (add-nat-missing(i;s) ∈ nat-missing-type())
Proof
Definitions occuring in Statement : 
add-nat-missing: add-nat-missing(i;s)
, 
nat-missing-type: nat-missing-type()
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
subtype_rel_sets, 
le_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
list_wf, 
nat_wf, 
l-ordered_wf, 
less_than_wf, 
l_all_wf2, 
l_member_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
nat-missing-type_wf, 
append_wf, 
from-upto_wf, 
subtype_rel_list, 
add-swap, 
zero-add, 
le-add-cancel, 
l-ordered-append, 
l-ordered-from-upto-lt-nat, 
from-upto-member-nat, 
l_all_iff, 
decidable__lt, 
less-iff-le, 
l_all_append, 
less_than_transitivity2, 
le_weakening2, 
set_wf, 
remove-combine_wf, 
subtract_wf, 
l-ordered-remove-combine, 
remove-combine-implies-member
\mforall{}[i:\mBbbN{}].  \mforall{}[s:nat-missing-type()].    (add-nat-missing(i;s)  \mmember{}  nat-missing-type())
Date html generated:
2015_07_17-AM-08_21_31
Last ObjectModification:
2015_04_02-PM-05_43_16
Home
Index