Nuprl Lemma : iterate-hdf-buffer2-simple
∀[A,B:Type]. ∀[X:hdataflow(A;B ─→ B)]. ∀[bs:bag(B)].
  ∀[L:A List]. ∀[a:A].  ((snd(hdf-buffer2(X;bs)*(L)(a))) = (snd(simple-hdf-buffer2(X;bs)*(L)(a))) ∈ bag(B)) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-buffer2: hdf-buffer2(X;bs)
, 
simple-hdf-buffer2: simple-hdf-buffer2(X;bs)
, 
iterate-hdataflow: P*(inputs)
, 
hdf-ap: X(a)
, 
hdataflow: hdataflow(A;B)
, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
bag_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
hdataflow-ext, 
unit_wf2, 
iter_hdf_nil_lemma, 
empty-bag_wf, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
iter_hdf_cons_lemma, 
iterate-hdf-halt, 
subtype_rel_list, 
top_wf, 
list_wf, 
valueall-type_wf, 
hdataflow_wf, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-combine_wf, 
bag-map_wf, 
bag-null_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
assert-bag-null, 
evalall-reduce
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  B)].  \mforall{}[bs:bag(B)].
    \mforall{}[L:A  List].  \mforall{}[a:A].    ((snd(hdf-buffer2(X;bs)*(L)(a)))  =  (snd(simple-hdf-buffer2(X;bs)*(L)(a)))) 
    supposing  valueall-type(B)
Date html generated:
2015_07_17-AM-08_07_57
Last ObjectModification:
2015_01_27-PM-00_08_17
Home
Index