Nuprl Lemma : subset-co-regext
∀a:coSet{i:l}. (transitive-set(a) 
⇒ (a ⊆ co-regext(a)))
Proof
Definitions occuring in Statement : 
co-regext: co-regext(a)
, 
transitive-set: transitive-set(s)
, 
setsubset: (a ⊆ b)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
prop: ℙ
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW-item: coW-item(w;b)
, 
coWmem: coWmem(a.B[a];z;w)
, 
mk-coset: mk-coset(T;f)
, 
setmem: (x ∈ s)
, 
co-regext: co-regext(a)
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
seteq: seteq(s1;s2)
, 
setsubset: (a ⊆ b)
, 
set-dom: set-dom(s)
, 
set-item: set-item(s;x)
, 
allsetmem: ∀a∈A.P[a]
, 
transitive-set: transitive-set(s)
, 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coSet: coSet{i:l}
, 
coW-game: coW-game(a.B[a];w;w')
, 
sg-pos: Pos(g)
, 
nat: ℕ
, 
sg-init: InitialPos(g)
, 
cand: A c∧ B
, 
copath-at: copath-at(w;p)
, 
copath-nil: ()
, 
coPath-at: coPath-at(n;w;p)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
regextfun: regextfun(f;w)
, 
regextW: regextW(G;t)
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
sg-legal1: Legal1(x;y)
, 
sg-legal2: Legal2(x;y)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
false: False
, 
guard: {T}
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
true: True
Lemmas referenced : 
transitive-set_wf, 
coSet_wf, 
setmem_wf, 
coSet_subtype, 
subtype_coSet, 
co-regext_wf, 
setsubset-iff, 
all_wf, 
set-item_wf, 
seteq_wf, 
exists_wf, 
set-dom_wf, 
subtype_rel_self, 
equal_wf, 
regextfun_wf, 
regextW_wf, 
seteq_functionality, 
seteq_weakening, 
good-sg-win2, 
coW-game_wf, 
coW_wf, 
copath-length_wf, 
nat_wf, 
copath-at_wf, 
sg-pos_wf, 
sg-init_wf, 
sg-legal1_wf, 
sg-legal2_wf, 
copath_length_nil_lemma, 
copath-nil_wf, 
pi1_wf, 
copath_wf, 
pi2_wf, 
set_wf, 
sq-stable-coW-game-legal1, 
copath-last_wf, 
decidable__lt, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
intformless_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
copathAgree-last, 
coW-dom_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
coW-equiv_weakening, 
coW-item_wf, 
coW-equiv_wf, 
co-seteq-iff, 
mk-coset_wf, 
copath-extend_wf, 
copathAgree_wf, 
length-copath-extend, 
add_functionality_wrt_eq, 
or_wf, 
copathAgree-extend, 
seteq_transitivity, 
copath-at-extend, 
seteq_inversion, 
item_mk_set_lemma, 
set-item-mem, 
setmem_functionality_1, 
decidable__equal_int
Rules used in proof : 
rename, 
sqequalRule, 
applyEquality, 
hypothesis_subsumption, 
independent_functionElimination, 
productElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality, 
because_Cache, 
promote_hyp, 
dependent_pairFormation, 
functionExtensionality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
cumulativity, 
productEquality, 
intEquality, 
setElimination, 
independent_pairFormation, 
setEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
independent_isectElimination, 
applyLambdaEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
independent_pairEquality, 
inrFormation, 
addEquality, 
equalityUniverse, 
levelHypothesis, 
spreadEquality, 
hyp_replacement, 
inlFormation
Latex:
\mforall{}a:coSet\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  (a  \msubseteq{}  co-regext(a)))
Date html generated:
2019_10_31-AM-06_34_45
Last ObjectModification:
2018_08_07-PM-01_43_56
Theory : constructive!set!theory
Home
Index