Nuprl Lemma : subset-co-regext

a:coSet{i:l}. (transitive-set(a)  (a ⊆ co-regext(a)))


Proof




Definitions occuring in Statement :  co-regext: co-regext(a) transitive-set: transitive-set(s) setsubset: (a ⊆ b) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  prop: pi2: snd(t) pi1: fst(t) coW-dom: coW-dom(a.B[a];w) coW-item: coW-item(w;b) coWmem: coWmem(a.B[a];z;w) mk-coset: mk-coset(T;f) setmem: (x ∈ s) co-regext: co-regext(a) subtype_rel: A ⊆B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] seteq: seteq(s1;s2) setsubset: (a ⊆ b) set-dom: set-dom(s) set-item: set-item(s;x) allsetmem: a∈A.P[a] transitive-set: transitive-set(s) coW-equiv: coW-equiv(a.B[a];w;w') coSet: coSet{i:l} coW-game: coW-game(a.B[a];w;w') sg-pos: Pos(g) nat: sg-init: InitialPos(g) cand: c∧ B copath-at: copath-at(w;p) copath-nil: () coPath-at: coPath-at(n;w;p) ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt regextfun: regextfun(f;w) regextW: regextW(G;t) Wsup: Wsup(a;b) mk-set: f"(T) sq_stable: SqStable(P) squash: T sg-legal1: Legal1(x;y) sg-legal2: Legal2(x;y) or: P ∨ Q uimplies: supposing a decidable: Dec(P) false: False guard: {T} ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True
Lemmas referenced :  transitive-set_wf coSet_wf setmem_wf coSet_subtype subtype_coSet co-regext_wf setsubset-iff all_wf set-item_wf seteq_wf exists_wf set-dom_wf subtype_rel_self equal_wf regextfun_wf regextW_wf seteq_functionality seteq_weakening good-sg-win2 coW-game_wf coW_wf copath-length_wf nat_wf copath-at_wf sg-pos_wf sg-init_wf sg-legal1_wf sg-legal2_wf copath_length_nil_lemma copath-nil_wf pi1_wf copath_wf pi2_wf set_wf sq-stable-coW-game-legal1 copath-last_wf decidable__lt nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf intformless_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf copathAgree-last coW-dom_wf subtype_rel-equal squash_wf true_wf iff_weakening_equal coW-equiv_weakening coW-item_wf coW-equiv_wf co-seteq-iff mk-coset_wf copath-extend_wf copathAgree_wf length-copath-extend add_functionality_wrt_eq or_wf copathAgree-extend seteq_transitivity copath-at-extend seteq_inversion item_mk_set_lemma set-item-mem setmem_functionality_1 decidable__equal_int
Rules used in proof :  rename sqequalRule applyEquality hypothesis_subsumption independent_functionElimination productElimination hypothesis isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality because_Cache promote_hyp dependent_pairFormation functionExtensionality functionEquality equalityTransitivity equalitySymmetry universeEquality instantiate cumulativity productEquality intEquality setElimination independent_pairFormation setEquality natural_numberEquality imageMemberEquality baseClosed imageElimination unionElimination independent_isectElimination applyLambdaEquality approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality independent_pairEquality inrFormation addEquality equalityUniverse levelHypothesis spreadEquality hyp_replacement inlFormation

Latex:
\mforall{}a:coSet\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  (a  \msubseteq{}  co-regext(a)))



Date html generated: 2019_10_31-AM-06_34_45
Last ObjectModification: 2018_08_07-PM-01_43_56

Theory : constructive!set!theory


Home Index