Nuprl Lemma : copathAgree-extend

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].
  ∀p:copath(a.B[a];w). ∀b:coW-dom(a.B[a];copath-at(w;p)).  copathAgree(a.B[a];w;p;copath-extend(p;b))


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-extend: copath-extend(q;t) copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) implies:  Q copath: copath(a.B[a];w) copath-extend: copath-extend(q;t) copathAgree: copathAgree(a.B[a];w;x;y) nat: top: Top copath-at: copath-at(w;p) less_than': less_than'(a;b) less_than: a < b not: ¬A squash: T false: False and: P ∧ Q prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B le: A ≤ B true: True rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) guard: {T} btrue: tt ifthenelse: if then else fi  coPath-extend: coPath-extend(n;p;t) eq_int: (i =z j) coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) sq_type: SQType(T) bfalse: ff cand: c∧ B assert: b bnot: ¬bb exists: x:A. B[x] it: unit: Unit bool: 𝔹
Lemmas referenced :  sq_stable__copathAgree copath-extend_wf top_wf squash_wf false_wf member_wf equal-wf-base not-lt-2 condition-implies-le minus-add nat_wf minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel coW-dom_wf copath-at_wf copath_wf coW_wf sq_stable__le primrec-wf2 less_than_wf set_wf le-add-cancel2 coPath_subtype coPath-extend_wf coPathAgree_wf add_functionality_wrt_le minus-minus zero-add less-iff-le not-le-2 decidable__le subtract_wf all_wf le_weakening2 coPath_wf le_wf coPath-at_wf int_subtype_base not_wf bnot_wf assert_wf less_than_irreflexivity le_weakening less_than_transitivity1 eq_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot coW-item_wf neg_assert_of_eq_int assert-bnot bool_cases_sqequal equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality dependent_functionElimination hypothesis independent_functionElimination productElimination lessCases setElimination rename addEquality because_Cache natural_numberEquality axiomSqEquality isect_memberEquality voidElimination voidEquality imageElimination productEquality intEquality independent_isectElimination minusEquality multiplyEquality imageMemberEquality baseClosed instantiate cumulativity functionEquality universeEquality unionElimination independent_pairFormation dependent_set_memberEquality functionExtensionality equalitySymmetry equalityTransitivity impliesFunctionality promote_hyp dependent_pairFormation equalityElimination

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}p:copath(a.B[a];w).  \mforall{}b:coW-dom(a.B[a];copath-at(w;p)).
        copathAgree(a.B[a];w;p;copath-extend(p;b))



Date html generated: 2019_06_20-PM-00_56_55
Last ObjectModification: 2019_01_02-PM-01_34_07

Theory : co-recursion-2


Home Index