Nuprl Lemma : copathAgree-extend
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].
  ∀p:copath(a.B[a];w). ∀b:coW-dom(a.B[a];copath-at(w;p)).  copathAgree(a.B[a];w;p;copath-extend(p;b))
Proof
Definitions occuring in Statement : 
copathAgree: copathAgree(a.B[a];w;x;y), 
copath-extend: copath-extend(q;t), 
copath-at: copath-at(w;p), 
copath: copath(a.B[a];w), 
coW-dom: coW-dom(a.B[a];w), 
coW: coW(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
copath: copath(a.B[a];w), 
copath-extend: copath-extend(q;t), 
copathAgree: copathAgree(a.B[a];w;x;y), 
nat: ℕ, 
top: Top, 
copath-at: copath-at(w;p), 
less_than': less_than'(a;b), 
less_than: a < b, 
not: ¬A, 
squash: ↓T, 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
true: True, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
guard: {T}, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
coPath-extend: coPath-extend(n;p;t), 
eq_int: (i =z j), 
coPathAgree: coPathAgree(a.B[a];n;w;p;q), 
coPath-at: coPath-at(n;w;p), 
coPath: coPath(a.B[a];w;n), 
sq_type: SQType(T), 
bfalse: ff, 
cand: A c∧ B, 
assert: ↑b, 
bnot: ¬bb, 
exists: ∃x:A. B[x], 
it: ⋅, 
unit: Unit, 
bool: 𝔹
Lemmas referenced : 
sq_stable__copathAgree, 
copath-extend_wf, 
top_wf, 
squash_wf, 
false_wf, 
member_wf, 
equal-wf-base, 
not-lt-2, 
condition-implies-le, 
minus-add, 
nat_wf, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
coW-dom_wf, 
copath-at_wf, 
copath_wf, 
coW_wf, 
sq_stable__le, 
primrec-wf2, 
less_than_wf, 
set_wf, 
le-add-cancel2, 
coPath_subtype, 
coPath-extend_wf, 
coPathAgree_wf, 
add_functionality_wrt_le, 
minus-minus, 
zero-add, 
less-iff-le, 
not-le-2, 
decidable__le, 
subtract_wf, 
all_wf, 
le_weakening2, 
coPath_wf, 
le_wf, 
coPath-at_wf, 
int_subtype_base, 
not_wf, 
bnot_wf, 
assert_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
eq_int_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
coW-item_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
hypothesis, 
independent_functionElimination, 
productElimination, 
lessCases, 
setElimination, 
rename, 
addEquality, 
because_Cache, 
natural_numberEquality, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
productEquality, 
intEquality, 
independent_isectElimination, 
minusEquality, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
cumulativity, 
functionEquality, 
universeEquality, 
unionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
equalitySymmetry, 
equalityTransitivity, 
impliesFunctionality, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}p:copath(a.B[a];w).  \mforall{}b:coW-dom(a.B[a];copath-at(w;p)).
        copathAgree(a.B[a];w;p;copath-extend(p;b))
 Date html generated: 
2019_06_20-PM-00_56_55
 Last ObjectModification: 
2019_01_02-PM-01_34_07
Theory : co-recursion-2
Home
Index