Nuprl Lemma : cubical-refl_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. (refl(a) ∈ {X ⊢ _:(Id_A a a)})
Proof
Definitions occuring in Statement :
cubical-refl: refl(a)
,
cubical-identity: (Id_A a b)
,
cubical-term: {X ⊢ _:AF}
,
cubical-type: {X ⊢ _}
,
cubical-set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical-refl: refl(a)
,
cubical-term: {X ⊢ _:AF}
,
cubical-identity: (Id_A a b)
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
cubical-path: cubical-path(X;A;a;b;I;alpha)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
quotient: x,y:A//B[x; y]
,
implies: P
⇒ Q
,
refl-path: refl-path(A;a;I;alpha)
,
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p)
,
path-eq: path-eq(X;A;I;alpha;p;q)
,
iota': iota'(I)
,
add-fresh-cname: I+
,
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
,
has-value: (a)↓
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
and: P ∧ Q
,
cand: A c∧ B
,
not: ¬A
,
false: False
,
cubical-type-at: A(a)
,
true: True
,
squash: ↓T
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
pi2: snd(t)
,
cubical-type-ap-morph: (u a f)
,
cubical-type: {X ⊢ _}
Lemmas referenced :
refl-path_wf,
subtype_quotient,
I-path_wf,
path-eq_wf,
path-eq-equiv,
I-cube_wf,
list_wf,
coordinate_name_wf,
name-morph_wf,
cubical-path_wf,
cube-set-restriction_wf,
I-path-morph_wf2,
subtype_rel_self,
cubical-term_wf,
cubical-type_wf,
cubical-set_wf,
quotient-member-eq,
I-path-morph_wf,
value-type-has-value,
not_wf,
l_member_wf,
set-value-type,
coordinate_name-value-type,
fresh-cname_wf,
cubical-type-ap-morph-id,
cons_wf,
rename-one-name_wf,
iota_wf,
cubical-type-ap-morph_wf,
extend-name-morph_wf,
cubical-type-at_wf,
rename-one-same,
id-morph_wf,
equal_wf,
squash_wf,
true_wf,
istype-universe,
iff_weakening_equal,
extend-name-morph-iota,
name-comp_wf,
cube-set-restriction-comp,
cubical-type-ap-morph-comp,
subtype_rel-equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
dependent_set_memberEquality_alt,
lambdaEquality_alt,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
isectElimination,
inhabitedIsType,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
universeIsType,
lambdaFormation_alt,
functionIsType,
because_Cache,
equalityIstype,
axiomEquality,
isect_memberEquality_alt,
isectIsTypeImplies,
independent_functionElimination,
rename,
callbyvalueReduce,
setEquality,
setElimination,
voidElimination,
independent_pairFormation,
natural_numberEquality,
imageElimination,
instantiate,
universeEquality,
imageMemberEquality,
baseClosed,
productElimination,
hyp_replacement
Latex:
\mforall{}[X:CubicalSet]. \mforall{}[A:\{X \mvdash{} \_\}]. \mforall{}[a:\{X \mvdash{} \_:A\}]. (refl(a) \mmember{} \{X \mvdash{} \_:(Id\_A a a)\})
Date html generated:
2020_05_21-AM-11_14_22
Last ObjectModification:
2019_12_10-PM-00_06_11
Theory : cubical!sets
Home
Index