Nuprl Lemma : cubical-refl_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (refl(a) ∈ {X ⊢ _:(Id_A a a)})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
cubical-identity: (Id_A a b)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-refl: refl(a)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-identity: (Id_A a b)
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
implies: P 
⇒ Q
, 
refl-path: refl-path(A;a;I;alpha)
, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p)
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
iota': iota'(I)
, 
add-fresh-cname: I+
, 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
, 
has-value: (a)↓
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
cubical-type-at: A(a)
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pi2: snd(t)
, 
cubical-type-ap-morph: (u a f)
, 
cubical-type: {X ⊢ _}
Lemmas referenced : 
refl-path_wf, 
subtype_quotient, 
I-path_wf, 
path-eq_wf, 
path-eq-equiv, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
name-morph_wf, 
cubical-path_wf, 
cube-set-restriction_wf, 
I-path-morph_wf2, 
subtype_rel_self, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
quotient-member-eq, 
I-path-morph_wf, 
value-type-has-value, 
not_wf, 
l_member_wf, 
set-value-type, 
coordinate_name-value-type, 
fresh-cname_wf, 
cubical-type-ap-morph-id, 
cons_wf, 
rename-one-name_wf, 
iota_wf, 
cubical-type-ap-morph_wf, 
extend-name-morph_wf, 
cubical-type-at_wf, 
rename-one-same, 
id-morph_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
extend-name-morph-iota, 
name-comp_wf, 
cube-set-restriction-comp, 
cubical-type-ap-morph-comp, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
lambdaFormation_alt, 
functionIsType, 
because_Cache, 
equalityIstype, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_functionElimination, 
rename, 
callbyvalueReduce, 
setEquality, 
setElimination, 
voidElimination, 
independent_pairFormation, 
natural_numberEquality, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
hyp_replacement
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (refl(a)  \mmember{}  \{X  \mvdash{}  \_:(Id\_A  a  a)\})
Date html generated:
2020_05_21-AM-11_14_22
Last ObjectModification:
2019_12_10-PM-00_06_11
Theory : cubical!sets
Home
Index