Nuprl Lemma : cubical-refl_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (refl(a) ∈ {X ⊢ _:(Id_A a)})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubical-identity: (Id_A b) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-refl: refl(a) cubical-term: {X ⊢ _:AF} cubical-identity: (Id_A b) pi1: fst(t) all: x:A. B[x] subtype_rel: A ⊆B cubical-path: cubical-path(X;A;a;b;I;alpha) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a quotient: x,y:A//B[x; y] implies:  Q refl-path: refl-path(A;a;I;alpha) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) path-eq: path-eq(X;A;I;alpha;p;q) iota': iota'(I) add-fresh-cname: I+ named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) has-value: (a)↓ prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B not: ¬A false: False cubical-type-at: A(a) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t) cubical-type-ap-morph: (u f) cubical-type: {X ⊢ _}
Lemmas referenced :  refl-path_wf subtype_quotient I-path_wf path-eq_wf path-eq-equiv I-cube_wf list_wf coordinate_name_wf name-morph_wf cubical-path_wf cube-set-restriction_wf I-path-morph_wf2 subtype_rel_self cubical-term_wf cubical-type_wf cubical-set_wf quotient-member-eq I-path-morph_wf value-type-has-value not_wf l_member_wf set-value-type coordinate_name-value-type fresh-cname_wf cubical-type-ap-morph-id cons_wf rename-one-name_wf iota_wf cubical-type-ap-morph_wf extend-name-morph_wf cubical-type-at_wf rename-one-same id-morph_wf equal_wf squash_wf true_wf istype-universe iff_weakening_equal extend-name-morph-iota name-comp_wf cube-set-restriction-comp cubical-type-ap-morph-comp subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis applyEquality isectElimination inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination universeIsType lambdaFormation_alt functionIsType because_Cache equalityIstype axiomEquality isect_memberEquality_alt isectIsTypeImplies independent_functionElimination rename callbyvalueReduce setEquality setElimination voidElimination independent_pairFormation natural_numberEquality imageElimination instantiate universeEquality imageMemberEquality baseClosed productElimination hyp_replacement

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (refl(a)  \mmember{}  \{X  \mvdash{}  \_:(Id\_A  a  a)\})



Date html generated: 2020_05_21-AM-11_14_22
Last ObjectModification: 2019_12_10-PM-00_06_11

Theory : cubical!sets


Home Index