Nuprl Lemma : nerve-box-face_wf

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[L:cat-ob(poset-cat(I))].
  nerve-box-face(box;L) ∈ {f:I-face(cubical-nerve(C);I)| (f ∈ box) ∧ (direction(f) (L dimension(f)) ∈ ℕ2)}  
  supposing ((L x) i ∈ ℕ2) ∨ (¬↑null(J))


Proof




Definitions occuring in Statement :  nerve-box-face: nerve-box-face(box;L) cubical-nerve: cubical-nerve(X) poset-cat: poset-cat(J) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) nameset: nameset(L) coordinate_name: Cname cat-ob: cat-ob(C) small-category: SmallCategory l_member: (x ∈ l) null: null(as) list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  poset-cat: poset-cat(J) cat-ob: cat-ob(C) pi1: fst(t) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a open_box: open_box(X;I;J;x;i) all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B name-morph: name-morph(I;J) uiff: uiff(P;Q) so_apply: x[s] int_seg: {i..j-} prop: nerve-box-face: nerve-box-face(box;L) iff: ⇐⇒ Q implies:  Q cand: c∧ B guard: {T} nameset: nameset(L) coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top sq_stable: SqStable(P) squash: T l_exists: (∃x∈L. P[x]) less_than: a < b I-face: I-face(X;I) face-dimension: dimension(f) face-direction: direction(f) face-name: face-name(f) pi2: snd(t) rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] sq_type: SQType(T) assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] bfalse: ff rev_implies:  Q
Lemmas referenced :  non_null_filter_iff I-face_wf cubical-nerve_wf eq_int_wf face-direction_wf face-dimension_wf hd-wf-not-null filter_wf5 int_seg_wf extd-nameset_subtype_int nil_wf coordinate_name_wf l_member_wf hd_member member_filter assert_of_eq_int int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf equal_wf extd-nameset-nil or_wf not_wf assert_wf null_wf3 subtype_rel_list nameset_wf top_wf name-morph_wf open_box_wf list_wf small-category_wf select_wf length_wf and_wf pi1_wf_top subtype_rel_product subtype_base_sq nameset_subtype_base pi2_wf list-cases null_nil_lemma product_subtype_list null_cons_lemma cons_member cons_wf set_subtype_base int_subtype_base le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination productElimination lambdaEquality applyEquality because_Cache independent_isectElimination natural_numberEquality setEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality independent_pairFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll lambdaFormation imageMemberEquality baseClosed imageElimination applyLambdaEquality productEquality axiomEquality instantiate cumulativity independent_pairEquality promote_hyp hypothesis_subsumption inlFormation

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[L:cat-ob(poset-cat(I))].
    nerve-box-face(box;L)  \mmember{}  \{f:I-face(cubical-nerve(C);I)| 
                                                      (f  \mmember{}  box)  \mwedge{}  (direction(f)  =  (L  dimension(f)))\}   
    supposing  ((L  x)  =  i)  \mvee{}  (\mneg{}\muparrow{}null(J))



Date html generated: 2017_10_05-PM-03_36_29
Last ObjectModification: 2017_07_28-AM-11_25_14

Theory : cubical!sets


Home Index