Nuprl Lemma : cubical-contr_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[p:{Gamma ⊢ _:Contractible(A)}]. ∀[phi:{Gamma ⊢ _:𝔽}].
[u:{Gamma, phi ⊢ _:(A)iota}].
  (cubical-contr(Gamma; A; cA; p; phi; u) ∈ {Gamma ⊢ _:A[phi |⟶ u]})


Proof




Definitions occuring in Statement :  cubical-contr: cubical-contr(Gamma; A; cA; p; phi; u) composition-op: Gamma ⊢ CompOp(A) contractible-type: Contractible(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-contr: cubical-contr(Gamma; A; cA; p; phi; u) subtype_rel: A ⊆B contractible-type: Contractible(A) cubical-type: {X ⊢ _} cc-snd: q cc-fst: p csm-ap-type: (AF)s csm-id-adjoin: [u] csm-comp: F csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) compose: g pi1: fst(t) uimplies: supposing a all: x:A. B[x] implies:  Q squash: T true: True prop: subset-iota: iota guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q istype: istype(T) csm-ap-term: (t)s pi2: snd(t) sq_type: SQType(T) interval-type: 𝕀 constant-cubical-type: (X) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf csm-adjoin_wf csm-comp_wf csm-id-adjoin_wf cubical-fst_wf cubical-pi_wf csm-ap-type-iota thin-context-subset cubical-term-eqcd subset-cubical-term context-subset_wf context-subset-is-subset istype-cubical-term subset-iota_wf2 face-type_wf contractible-type_wf composition-op_wf cubical-type_wf cubical_set_wf cubical-snd_wf csm_id_adjoin_fst_type_lemma squash_wf true_wf cubical-app_wf csm-context-subset-subtype2 csm-id_wf csm-context-subset-subtype3 csm-cubical-pi cubical-pi-context-subset subtype_rel-equal equal_wf istype-universe csm-ap-id-type subtype_rel_self iff_weakening_equal csm-path-type cube_set_map_wf csm-ap-type-fst-adjoin thin-context-subset-adjoin context-subset-term-subtype csm_ap_term_fst_adjoin_lemma subtype_base_sq base_wf path-type-subset-adjoin cubical-path-app_wf interval-type_wf cubical-term_wf cubical-path-app-0 cubical-path-ap-id-adjoin interval-0_wf csm-id-adjoin_wf-interval-0 composition-term_wf cc-fst_wf_interval csm-composition_wf subset-cubical-term2 sub_cubical_set_self interval-1_wf cubical-path-app-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache setElimination rename productElimination equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement inhabitedIsType lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination imageElimination Error :memTop,  natural_numberEquality imageMemberEquality baseClosed equalityElimination applyLambdaEquality baseApply closedConclusion dependent_set_memberEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[p:\{Gamma  \mvdash{}  \_:Contractible(A)\}].
\mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:(A)iota\}].
    (cubical-contr(Gamma;  A;  cA;  p;  phi;  u)  \mmember{}  \{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  u]\})



Date html generated: 2020_05_20-PM-04_19_53
Last ObjectModification: 2020_04_19-PM-07_31_27

Theory : cubical!type!theory


Home Index