Nuprl Lemma : tarski-perp-exists

e:HeytingGeometry. ∀a,b,c:Point.  (a bc  (∃x:Point. (Colinear(a;b;x) ∧ ab ⊥ cx)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp: ab ⊥ cd geo-colinear: Colinear(a;b;c) geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q cand: c∧ B heyting-geometry: HeytingGeometry exists: x:A. B[x] euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) basic-geometry-: BasicGeometry- oriented-plane: OrientedPlane iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-midpoint: a=m=b uiff: uiff(P;Q) geo-cong-tri: Cong3(abc,a'b'c') right-angle: Rabc geo-perp: ab ⊥ cd
Lemmas referenced :  geo-triangle_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-triangle-property geo-sep-sym geo-proper-extend-exists subtype_rel_self basic-geo-axioms_wf geo-left-axioms_wf geo-strict-between-sep3 lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-strict-between-implies-colinear geo-colinear-is-colinear-set geo-strict-between-sep1 geo-triangle-colinear geo-congruent-mid-exists geo-triangle-symmetry geo-midpoint_wf implies-right-angle geo-midpoint-symmetry midpoint-sep geo-strict-between-sep2 geo-strict-between-sym geo-strict-between-trans3 geo-triangle-colinear' oriented-colinear-append cons_wf nil_wf cons_member l_member_wf equal_wf geo-sep_wf exists_wf list_ind_cons_lemma list_ind_nil_lemma symmetric-point-construction geo-between-sep geo-between-implies-colinear euclidean-plane-axioms geo-between-symmetry geo-strict-between-implies-between geo-between-outer-trans geo-congruent-symmetry geo-congruent-iff-length geo-length-flip geo-congruent-flip geo-five-segment geo-between-exchange3 congruence-preserves-right-angle geo-krippen-lemma right-angle-symmetry geo-colinear_wf geo-perp_wf geo-perp-in-iff geo-colinear-same right-angle_wf geo-perp-in_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination independent_functionElimination productElimination rename setEquality productEquality cumulativity baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality dependent_pairFormation inrFormation inlFormation lambdaEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mexists{}x:Point.  (Colinear(a;b;x)  \mwedge{}  ab  \mbot{}  cx)))



Date html generated: 2017_10_02-PM-07_09_45
Last ObjectModification: 2017_08_16-PM-00_17_01

Theory : euclidean!plane!geometry


Home Index