Nuprl Lemma : unique-angles-in-half-plane

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  (a bc
   yz
   ((∃f:Point. (acb ≅a fzy ∧ (x leftof yz ⇐⇒ leftof yz) ∧ (x leftof zy ⇐⇒ leftof zy)))
     ∧ (∀f1,f2:Point.
          ((acb ≅a f1zy ∧ acb ≅a f2zy)
           (((x leftof yz ⇐⇒ f1 leftof yz) ∧ (x leftof zy ⇐⇒ f1 leftof zy))
             ∧ (x leftof yz ⇐⇒ f2 leftof yz)
             ∧ (x leftof zy ⇐⇒ f2 leftof zy))
           Colinear(z;f1;f2)))))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-lsep: bc geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  nat: l_member: (x ∈ l) basic-geometry-: BasicGeometry- geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz uiff: uiff(P;Q) geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m geo-lsep: bc or: P ∨ Q geo-out: out(p ab) not: ¬A false: False exists: x:A. B[x] basic-geometry: BasicGeometry rev_implies:  Q prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  int_formula_prop_less_lemma intformless_wf decidable__lt list_ind_nil_lemma list_ind_cons_lemma l_member_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties select_wf length_wf nil_wf cons_wf geo-colinear-append left-convex2 geo-eq_inversion Euclid-Prop7 geo-sep_wf left-convex geo-between_functionality geo-eq_weakening geo-congruent_functionality geo-inner-five-segment geo-construction-unicity geo-congruent-refl geo-between-symmetry geo-inner-three-segment geo-cong-angle-transitivity geo-cong-angle-symm2 euclidean-plane-axioms geo-between-trivial geo-length-flip geo-congruent_wf cong3-in-half-plane geo-congruent-iff-length geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm not-left-and-right lsep-all-sym2 colinear-lsep-cycle lsep-all-sym geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma length_of_nil_lemma istype-false istype-le istype-less_than geo-left-out geo-between-sep istype-void geo-between_wf geo-extend-exists geo-sep-sym lsep-implies-sep geo-point_wf geo-lsep_wf geo-cong-angle_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-left_wf
Rules used in proof :  int_eqEquality approximateComputation equalityIstype setElimination inlFormation_alt lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt promote_hyp isect_memberEquality_alt dependent_set_memberEquality_alt natural_numberEquality imageMemberEquality baseClosed unionElimination voidElimination dependent_functionElimination independent_functionElimination rename inhabitedIsType because_Cache independent_isectElimination instantiate applyEquality hypothesisEquality isectElimination extract_by_obid introduction universeIsType functionIsType productIsType sqequalRule thin productElimination sqequalHypSubstitution hypothesis independent_pairFormation cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  ((\mexists{}f:Point.  (acb  \mcong{}\msuba{}  fzy  \mwedge{}  (x  leftof  yz  \mLeftarrow{}{}\mRightarrow{}  f  leftof  yz)  \mwedge{}  (x  leftof  zy  \mLeftarrow{}{}\mRightarrow{}  f  leftof  zy)))
          \mwedge{}  (\mforall{}f1,f2:Point.
                    ((acb  \mcong{}\msuba{}  f1zy  \mwedge{}  acb  \mcong{}\msuba{}  f2zy)
                    {}\mRightarrow{}  (((x  leftof  yz  \mLeftarrow{}{}\mRightarrow{}  f1  leftof  yz)  \mwedge{}  (x  leftof  zy  \mLeftarrow{}{}\mRightarrow{}  f1  leftof  zy))
                          \mwedge{}  (x  leftof  yz  \mLeftarrow{}{}\mRightarrow{}  f2  leftof  yz)
                          \mwedge{}  (x  leftof  zy  \mLeftarrow{}{}\mRightarrow{}  f2  leftof  zy))
                    {}\mRightarrow{}  Colinear(z;f1;f2)))))



Date html generated: 2019_10_29-AM-09_18_40
Last ObjectModification: 2019_10_18-PM-04_51_29

Theory : euclidean!plane!geometry


Home Index