Nuprl Lemma : proj-rev_functionality

[n:ℕ]. ∀[p1,p2:ℙ^n].  proj-rev(n;p1) proj-rev(n;p2) supposing p1 p2


Proof




Definitions occuring in Statement :  proj-rev: proj-rev(n;p) proj-eq: b real-proj: ^n nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q squash: T exists: x:A. B[x] req-vec: req-vec(n;x;y) nat: prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B real-proj: ^n proj-eq: b real-vec: ^n real-vec-mul: a*X proj-rev: proj-rev(n;p) int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  proj-eq-iff proj-rev_wf int_seg_wf req-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf real-vec-mul_wf req_witness rmul_wf real-proj_wf proj-eq_wf nat_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf rminus_wf itermSubtract_wf itermMinus_wf itermMultiply_wf req-iff-rsub-is-0 req_functionality rminus_functionality req_weakening real_polynomial_null int-to-real_wf real_term_value_sub_lemma real_term_value_minus_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination isectElimination imageElimination dependent_pairFormation lambdaFormation natural_numberEquality addEquality setElimination rename dependent_set_memberEquality unionElimination independent_isectElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality because_Cache imageMemberEquality baseClosed equalityTransitivity equalitySymmetry equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p1,p2:\mBbbP{}\^{}n].    proj-rev(n;p1)  =  proj-rev(n;p2)  supposing  p1  =  p2



Date html generated: 2017_10_05-AM-00_19_27
Last ObjectModification: 2017_06_17-AM-10_08_31

Theory : inner!product!spaces


Home Index