Nuprl Lemma : trans-apply-sep

rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point.
  ((∃e:Point. translation-group-fun(rv;e;T))  (∀x:Point. ∀t1,t2:ℝ.  (t1 ≠ t2  T_t2(x) T_t1(x))))


Proof




Definitions occuring in Statement :  trans-apply: T_t(x) translation-group-fun: translation-group-fun(rv;e;T) inner-product-space: InnerProductSpace rneq: x ≠ y real: ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] translation-group-fun: translation-group-fun(rv;e;T) and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q not: ¬A trans-apply: T_t(x) ss-eq: x ≡ y false: False rev_implies:  Q rneq: x ≠ y or: P ∨ Q req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  trans-apply_wf real_wf int-to-real_wf rneq_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf exists_wf translation-group-fun_wf ss-eq_wf rv-add_wf rv-mul_wf rv-0_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul0 rv-0-add ss-sep_functionality not-rneq trans-apply-0 rneq_functionality req_weakening req_inversion rneq-symmetry rless-implies-rless rsub_wf rless_wf itermSubtract_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma radd_wf ss-eq_inversion trans-apply-add itermAdd_wf trans-apply_functionality real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis addLevel dependent_functionElimination introduction extract_by_obid hypothesisEquality functionExtensionality applyEquality isectElimination natural_numberEquality levelHypothesis instantiate independent_isectElimination sqequalRule because_Cache lambdaEquality functionEquality independent_functionElimination allFunctionality promote_hyp dependent_pairFormation voidElimination unionElimination inlFormation inrFormation approximateComputation int_eqEquality intEquality isect_memberEquality voidEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((\mexists{}e:Point.  translation-group-fun(rv;e;T))
    {}\mRightarrow{}  (\mforall{}x:Point.  \mforall{}t1,t2:\mBbbR{}.    (t1  \mneq{}  t2  {}\mRightarrow{}  T\_t2(x)  \#  T\_t1(x))))



Date html generated: 2017_10_05-AM-00_21_50
Last ObjectModification: 2017_06_26-PM-06_56_05

Theory : inner!product!spaces


Home Index