Nuprl Lemma : remove-singularity-mfun
∀[X:Type]. ∀[d:metric(X)].
  ∀k:ℕ. ∀f:{p:ℝ^k| r0 < ||p||}  ⟶ X. ∀z:X.
    ((∃c:{c:ℝ| r0 ≤ c} . ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} .  ((||p|| ≤ (r(4)/r(m))) 
⇒ (mdist(d;f p;z) ≤ (c/r(m)))))
    
⇒ mcomplete(X with d)
    
⇒ (∃g:ℝ^k ⟶ X
         ((∀p:ℝ^k. (req-vec(k;p;λi.r0) 
⇒ g p ≡ z))
         ∧ (∀p:{p:ℝ^k| r0 < ||p||} . g p ≡ f p)
         ∧ (f:FUN({p:ℝ^k| r0 < ||p||} X) 
⇒ g:FUN(ℝ^k;X)))))
Proof
Definitions occuring in Statement : 
rn-metric: rn-metric(n)
, 
real-vec-norm: ||x||
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
mcomplete: mcomplete(M)
, 
is-mfun: f:FUN(X;Y)
, 
mk-metric-space: X with d
, 
mdist: mdist(d;x;y)
, 
meq: x ≡ y
, 
metric: metric(X)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
is-mfun: f:FUN(X;Y)
, 
so_apply: x[s]
, 
prop: ℙ
, 
meq: x ≡ y
, 
metric: metric(X)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
stable: Stable{P}
, 
rn-metric: rn-metric(n)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
remove-singularity, 
meq_wf, 
real-vec_wf, 
rn-metric_wf, 
req_witness, 
int-to-real_wf, 
is-mfun_wf, 
rless_wf, 
real-vec-norm_wf, 
metric-on-subtype, 
req-vec_wf, 
int_seg_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
real_wf, 
rleq_wf, 
nat_plus_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
mdist_wf, 
istype-nat, 
metric_wf, 
istype-universe, 
stable__meq, 
false_wf, 
not_wf, 
not-rless, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
real-vec-dist-identity, 
meq_functionality, 
rless_functionality, 
req_weakening, 
real-vec-norm_functionality, 
req-vec_inversion, 
rleq_antisymmetry, 
real-vec-norm-nonneg, 
real-vec-norm-is-0, 
req-vec_functionality, 
req-vec_weakening, 
meq-same
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
sqequalRule, 
universeIsType, 
inhabitedIsType, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
functionIsTypeImplies, 
setEquality, 
independent_isectElimination, 
setIsType, 
because_Cache, 
productIsType, 
functionIsType, 
closedConclusion, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
instantiate, 
universeEquality, 
unionEquality, 
functionEquality, 
unionIsType, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}k:\mBbbN{}.  \mforall{}f:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}    {}\mrightarrow{}  X.  \mforall{}z:X.
        ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
              \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .    ((||p||  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
        {}\mRightarrow{}  mcomplete(X  with  d)
        {}\mRightarrow{}  (\mexists{}g:\mBbbR{}\^{}k  {}\mrightarrow{}  X
                  ((\mforall{}p:\mBbbR{}\^{}k.  (req-vec(k;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  z))
                  \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .  g  p  \mequiv{}  f  p)
                  \mwedge{}  (f:FUN(\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  ;X)  {}\mRightarrow{}  g:FUN(\mBbbR{}\^{}k;X)))))
Date html generated:
2019_10_30-AM-11_24_48
Last ObjectModification:
2019_07_02-PM-00_25_15
Theory : real!vectors
Home
Index