Nuprl Lemma : remove-singularity-mfun

[X:Type]. ∀[d:metric(X)].
  ∀k:ℕ. ∀f:{p:ℝ^k| r0 < ||p||}  ⟶ X. ∀z:X.
    ((∃c:{c:ℝr0 ≤ c} . ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} .  ((||p|| ≤ (r(4)/r(m)))  (mdist(d;f p;z) ≤ (c/r(m)))))
     mcomplete(X with d)
     (∃g:ℝ^k ⟶ X
         ((∀p:ℝ^k. (req-vec(k;p;λi.r0)  p ≡ z))
         ∧ (∀p:{p:ℝ^k| r0 < ||p||} p ≡ p)
         ∧ (f:FUN({p:ℝ^k| r0 < ||p||} ;X)  g:FUN(ℝ^k;X)))))


Proof




Definitions occuring in Statement :  rn-metric: rn-metric(n) real-vec-norm: ||x|| req-vec: req-vec(n;x;y) real-vec: ^n mcomplete: mcomplete(M) is-mfun: f:FUN(X;Y) mk-metric-space: with d mdist: mdist(d;x;y) meq: x ≡ y metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B is-mfun: f:FUN(X;Y) so_apply: x[s] prop: meq: x ≡ y metric: metric(X) subtype_rel: A ⊆B uimplies: supposing a real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat: nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top stable: Stable{P} rn-metric: rn-metric(n) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  remove-singularity meq_wf real-vec_wf rn-metric_wf req_witness int-to-real_wf is-mfun_wf rless_wf real-vec-norm_wf metric-on-subtype req-vec_wf int_seg_wf mcomplete_wf mk-metric-space_wf real_wf rleq_wf nat_plus_wf rdiv_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf mdist_wf istype-nat metric_wf istype-universe stable__meq false_wf not_wf not-rless minimal-double-negation-hyp-elim minimal-not-not-excluded-middle real-vec-dist-identity meq_functionality rless_functionality req_weakening real-vec-norm_functionality req-vec_inversion rleq_antisymmetry real-vec-norm-nonneg real-vec-norm-is-0 req-vec_functionality req-vec_weakening meq-same
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination independent_functionElimination productElimination dependent_pairFormation_alt independent_pairFormation sqequalRule universeIsType inhabitedIsType lambdaEquality_alt applyEquality setElimination rename natural_numberEquality functionIsTypeImplies setEquality independent_isectElimination setIsType because_Cache productIsType functionIsType closedConclusion inrFormation_alt unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination instantiate universeEquality unionEquality functionEquality unionIsType dependent_set_memberEquality_alt

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}k:\mBbbN{}.  \mforall{}f:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}    {}\mrightarrow{}  X.  \mforall{}z:X.
        ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
              \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .    ((||p||  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
        {}\mRightarrow{}  mcomplete(X  with  d)
        {}\mRightarrow{}  (\mexists{}g:\mBbbR{}\^{}k  {}\mrightarrow{}  X
                  ((\mforall{}p:\mBbbR{}\^{}k.  (req-vec(k;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  z))
                  \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .  g  p  \mequiv{}  f  p)
                  \mwedge{}  (f:FUN(\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  ;X)  {}\mRightarrow{}  g:FUN(\mBbbR{}\^{}k;X)))))



Date html generated: 2019_10_30-AM-11_24_48
Last ObjectModification: 2019_07_02-PM-00_25_15

Theory : real!vectors


Home Index