Nuprl Lemma : remove-singularity
∀[X:Type]. ∀[d:metric(X)].
  ∀k:ℕ. ∀f:{p:ℝ^k| r0 < ||p||}  ⟶ X. ∀z:X.
    ((∃c:{c:ℝ| r0 ≤ c} . ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} .  ((||p|| ≤ (r(4)/r(m))) ⇒ (mdist(d;f p;z) ≤ (c/r(m)))))
    ⇒ mcomplete(X with d)
    ⇒ (∃g:ℝ^k ⟶ X. ((∀p:ℝ^k. (req-vec(k;p;λi.r0) ⇒ g p ≡ z)) ∧ (∀p:{p:ℝ^k| r0 < ||p||} . g p ≡ f p))))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
mdist: mdist(d;x;y), 
meq: x ≡ y, 
metric: metric(X), 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
real: ℝ, 
eq_int: (i =z j), 
sq_stable: SqStable(P), 
rev_uimplies: rev_uimplies(P;Q), 
mconverges-to: lim n→∞.x[n] = y, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
less_than: a < b, 
sq_exists: ∃x:A [B[x]], 
rless: x < y, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
incr-binary-seq: IBS, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
remove-singularity-seq: remove-singularity-seq(k;p;f;z), 
top: Top, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
decidable: Dec(P), 
ge: i ≥ j , 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
real-vec: ℝ^n, 
meq: x ≡ y, 
uimplies: b supposing a, 
cand: A c∧ B, 
and: P ∧ Q, 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
metric: metric(X), 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
ifthenelse_wf, 
sq_stable__less_than, 
ibs-property, 
sq_stable__rless, 
mdist-same, 
rleq_functionality, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
istype-le, 
rleq-int-fractions2, 
decidable__le, 
intformle_wf, 
itermMultiply_wf, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
real-vec-norm-0, 
real-vec-norm_functionality, 
req_weakening, 
rless_functionality, 
int_term_value_add_lemma, 
itermAdd_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
realvec-ibs-property, 
assert_of_eq_int, 
eqtt_to_assert, 
realvec-ibs_wf, 
eq_int_wf, 
istype-universe, 
metric_wf, 
istype-nat, 
mdist_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
nat_plus_wf, 
rleq_wf, 
real_wf, 
mk-metric-space_wf, 
mcomplete_wf, 
meq_wf, 
real-vec-norm_wf, 
rless_wf, 
int_seg_wf, 
req-vec_wf, 
int-to-real_wf, 
req_witness, 
cauchy-mlimit-unique, 
real-vec_wf, 
mcauchy_wf, 
remove-singularity-seq_wf, 
cauchy-mlimit_wf, 
remove-singularity-seq-mcauchy
Rules used in proof : 
addEquality, 
imageMemberEquality, 
dependent_set_memberFormation_alt, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
imageElimination, 
cumulativity, 
promote_hyp, 
sqequalBase, 
baseClosed, 
intEquality, 
equalityIstype, 
equalityElimination, 
universeEquality, 
instantiate, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
inrFormation_alt, 
closedConclusion, 
functionIsType, 
productIsType, 
setIsType, 
independent_pairFormation, 
productElimination, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
universeIsType, 
inhabitedIsType, 
isectIsType, 
equalitySymmetry, 
equalityTransitivity, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
rename, 
independent_functionElimination, 
lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}k:\mBbbN{}.  \mforall{}f:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}    {}\mrightarrow{}  X.  \mforall{}z:X.
        ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
              \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .    ((||p||  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
        {}\mRightarrow{}  mcomplete(X  with  d)
        {}\mRightarrow{}  (\mexists{}g:\mBbbR{}\^{}k  {}\mrightarrow{}  X
                  ((\mforall{}p:\mBbbR{}\^{}k.  (req-vec(k;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  z))  \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .  g  p  \mequiv{}  f  p))))
Date html generated:
2019_10_30-AM-11_24_44
Last ObjectModification:
2019_10_29-PM-01_33_50
Theory : real!vectors
Home
Index