Nuprl Lemma : cantor_to_interval_wf
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:ℕ ⟶ 𝔹].  (cantor_to_interval(a;b;f) ∈ {x:ℝ| x ∈ [a, b]} )
Proof
Definitions occuring in Statement : 
cantor_to_interval: cantor_to_interval(a;b;f)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
cantor_to_interval: cantor_to_interval(a;b;f)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
, 
cand: A c∧ B
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
member_rccint_lemma, 
trivial-rleq-radd, 
int-to-real_wf, 
rleq-int, 
false_wf, 
cantor-to-interval_wf, 
radd_wf, 
rleq_transitivity, 
nat_wf, 
set_wf, 
real_wf, 
rleq_wf, 
equal_wf, 
bool_wf, 
rsub_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
rless-int, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rsub_functionality_wrt_rleq, 
rless_functionality, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rleq-implies-rleq, 
rless_wf, 
rmul_preserves_rleq2, 
rleq_functionality, 
rmul_wf, 
rmul-zero-both, 
rmul_comm, 
rdiv_wf, 
rmul_preserves_rleq, 
itermMultiply_wf, 
rinv_wf2, 
req_transitivity, 
radd_functionality, 
rmul-rinv3, 
real_term_value_mul_lemma, 
rmul-identity1, 
iff_weakening_equal, 
req_wf, 
squash_wf, 
true_wf, 
rinv-mul-as-rdiv, 
radd-preserves-rleq, 
rminus_wf, 
itermMinus_wf, 
radd-rminus-assoc, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
approximateComputation, 
int_eqEquality, 
intEquality, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
inrFormation, 
imageElimination, 
universeEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].    (cantor\_to\_interval(a;b;f)  \mmember{}  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  )
Date html generated:
2018_05_22-PM-02_10_29
Last ObjectModification:
2017_10_06-AM-11_20_14
Theory : reals
Home
Index