Nuprl Lemma : cantor_to_interval_wf

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f:ℕ ⟶ 𝔹].  (cantor_to_interval(a;b;f) ∈ {x:ℝx ∈ [a, b]} )


Proof




Definitions occuring in Statement :  cantor_to_interval: cantor_to_interval(a;b;f) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y real: nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: cantor_to_interval: cantor_to_interval(a;b;f) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T true: True rge: x ≥ y req_int_terms: t1 ≡ t2 cand: c∧ B rneq: x ≠ y or: P ∨ Q rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) subtype_rel: A ⊆B
Lemmas referenced :  member_rccint_lemma trivial-rleq-radd int-to-real_wf rleq-int false_wf cantor-to-interval_wf radd_wf rleq_transitivity nat_wf set_wf real_wf rleq_wf equal_wf bool_wf rsub_wf itermSubtract_wf itermAdd_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 rless-int rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rsub_functionality_wrt_rleq rless_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_var_lemma rleq-implies-rleq rless_wf rmul_preserves_rleq2 rleq_functionality rmul_wf rmul-zero-both rmul_comm rdiv_wf rmul_preserves_rleq itermMultiply_wf rinv_wf2 req_transitivity radd_functionality rmul-rinv3 real_term_value_mul_lemma rmul-identity1 iff_weakening_equal req_wf squash_wf true_wf rinv-mul-as-rdiv radd-preserves-rleq rminus_wf itermMinus_wf radd-rminus-assoc real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination setElimination rename hypothesisEquality natural_numberEquality productElimination independent_isectElimination independent_functionElimination independent_pairFormation lambdaFormation functionExtensionality applyEquality lambdaEquality productEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality because_Cache imageMemberEquality baseClosed approximateComputation int_eqEquality intEquality addLevel levelHypothesis dependent_set_memberEquality inrFormation imageElimination universeEquality

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].    (cantor\_to\_interval(a;b;f)  \mmember{}  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  )



Date html generated: 2018_05_22-PM-02_10_29
Last ObjectModification: 2017_10_06-AM-11_20_14

Theory : reals


Home Index