Nuprl Lemma : rneq-if-rabs2
∀x,y:ℝ.  ((r0 < |x - y|) 
⇒ x ≠ y)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
ge: i ≥ j 
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
absval: |i|
, 
uiff: uiff(P;Q)
, 
rneq: x ≠ y
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
iff: P 
⇐⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
int_nzero: ℤ-o
, 
and: P ∧ Q
, 
real: ℝ
, 
rminus: -(x)
, 
rmax: rmax(x;y)
, 
rsub: x - y
, 
has-value: (a)↓
, 
guard: {T}
, 
sq_type: SQType(T)
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int-to-real: r(n)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_formula_prop_or_lemma, 
int_formula_prop_le_lemma, 
intformor_wf, 
intformle_wf, 
multiply-is-int-iff, 
nat_properties, 
absval_wf, 
absval_unfold2, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
remainder_wfa, 
rem_bounds_absval, 
div_rem_sum, 
radd-approx, 
false_wf, 
int_term_value_minus_lemma, 
itermMinus_wf, 
minus-is-int-iff, 
add-is-int-iff, 
less_than_wf, 
istype-top, 
nequal_wf, 
istype-less_than, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
divide_wfa, 
imax_strict_ub, 
rminus_wf, 
rabs-as-rmax, 
int-value-type, 
value-type-has-value, 
real_wf, 
rsub_wf, 
rabs_wf, 
int-to-real_wf, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_plus_properties, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
functionIsType, 
inrFormation_alt, 
inlFormation_alt, 
equalityElimination, 
unionIsType, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
applyLambdaEquality, 
inrEquality_alt, 
inlEquality_alt, 
imageElimination, 
imageMemberEquality, 
isectIsTypeImplies, 
axiomSqEquality, 
isect_memberFormation_alt, 
lessCases, 
productElimination, 
sqequalBase, 
baseClosed, 
equalityIstype, 
minusEquality, 
independent_pairFormation, 
closedConclusion, 
dependent_set_memberEquality_alt, 
applyEquality, 
addEquality, 
multiplyEquality, 
callbyvalueReduce, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
natural_numberEquality, 
unionElimination, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
sqequalRule, 
hypothesis, 
cut, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  <  |x  -  y|)  {}\mRightarrow{}  x  \mneq{}  y)
Date html generated:
2019_11_06-PM-00_27_38
Last ObjectModification:
2019_11_05-PM-02_11_50
Theory : reals
Home
Index