Nuprl Lemma : rsum_int
∀[n:ℕ]. ∀[y:ℕn ⟶ ℤ].  (Σ{r(y[k]) | 0≤k≤n - 1} = r(Σ(y[k] | k < n)))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
int-to-real: r(n)
, 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
req_witness, 
int_seg_wf, 
rsum_wf, 
subtract_wf, 
int-to-real_wf, 
int_seg_properties, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
itermAdd_wf, 
itermSubtract_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
sum_wf, 
subtract-1-ge-0, 
istype-nat, 
rsum-empty, 
req_weakening, 
radd_wf, 
req_functionality, 
rsum-split-last, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_rel_self, 
radd_functionality, 
radd-int, 
subtype_base_sq, 
int_subtype_base, 
sum_split1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
applyEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
unionElimination, 
productIsType, 
addEquality, 
because_Cache, 
isectIsTypeImplies, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
intEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[y:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}\{r(y[k])  |  0\mleq{}k\mleq{}n  -  1\}  =  r(\mSigma{}(y[k]  |  k  <  n)))
Date html generated:
2019_10_29-AM-10_12_21
Last ObjectModification:
2019_06_17-PM-06_09_47
Theory : reals
Home
Index