Nuprl Lemma : rsum_int

[n:ℕ]. ∀[y:ℕn ⟶ ℤ].  {r(y[k]) 0≤k≤1} r(Σ(y[k] k < n)))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y int-to-real: r(n) sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q subtract: m less_than': less_than'(a;b) sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q nat_plus: + sq_type: SQType(T) guard: {T}
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than req_witness int_seg_wf rsum_wf subtract_wf int-to-real_wf int_seg_properties decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma istype-le sum_wf subtract-1-ge-0 istype-nat rsum-empty req_weakening radd_wf req_functionality rsum-split-last subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self radd_functionality radd-int subtype_base_sq int_subtype_base sum_split1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType functionIsTypeImplies inhabitedIsType functionIsType applyEquality dependent_set_memberEquality_alt productElimination imageElimination unionElimination productIsType addEquality because_Cache isectIsTypeImplies minusEquality imageMemberEquality baseClosed intEquality multiplyEquality instantiate cumulativity equalitySymmetry equalityTransitivity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[y:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}\{r(y[k])  |  0\mleq{}k\mleq{}n  -  1\}  =  r(\mSigma{}(y[k]  |  k  <  n)))



Date html generated: 2019_10_29-AM-10_12_21
Last ObjectModification: 2019_06_17-PM-06_09_47

Theory : reals


Home Index