Nuprl Lemma : subtract-rpolynomials
∀[n,m:ℕ]. ∀[a:ℕn + 1 ⟶ ℝ]. ∀[b:ℕm + 1 ⟶ ℝ]. ∀[x:ℝ].
((Σi≤n. a_i * x^i) - (Σi≤m. b_i * x^i)) = (Σi≤n. λi.if i ≤z m then (a i) - b i else a i fi _i * x^i) supposing m ≤ n
Proof
Definitions occuring in Statement :
rpolynomial: (Σi≤n. a_i * x^i)
,
rsub: x - y
,
req: x = y
,
real: ℝ
,
int_seg: {i..j-}
,
nat: ℕ
,
le_int: i ≤z j
,
ifthenelse: if b then t else f fi
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
int_seg: {i..j-}
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
bfalse: ff
,
rsub: x - y
,
rev_uimplies: rev_uimplies(P;Q)
,
pointwise-req: x[k] = y[k] for k ∈ [n,m]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
req_int_terms: t1 ≡ t2
Lemmas referenced :
req_witness,
rsub_wf,
rpolynomial_wf,
le_int_wf,
eqtt_to_assert,
assert_of_le_int,
nat_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
istype-le,
istype-less_than,
int_seg_wf,
real_wf,
istype-nat,
radd_wf,
rminus_wf,
rmul_wf,
int-to-real_wf,
req_functionality,
radd_functionality,
rminus-as-rmul,
req_weakening,
req_wf,
uiff_transitivity,
rmul-rpolynomial,
add-rpolynomials,
rpolynomial_functionality,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
le_wf,
decidable__le,
itermSubtract_wf,
itermMultiply_wf,
itermMinus_wf,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_add_lemma,
real_term_value_var_lemma,
real_term_value_mul_lemma,
real_term_value_const_lemma,
real_term_value_minus_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality_alt,
setElimination,
rename,
because_Cache,
inhabitedIsType,
lambdaFormation_alt,
unionElimination,
equalityElimination,
sqequalRule,
productElimination,
independent_isectElimination,
applyEquality,
dependent_set_memberEquality_alt,
independent_pairFormation,
dependent_functionElimination,
addEquality,
natural_numberEquality,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
universeIsType,
productIsType,
equalityIstype,
equalityTransitivity,
equalitySymmetry,
isectIsTypeImplies,
functionIsType,
minusEquality,
closedConclusion,
promote_hyp,
instantiate,
cumulativity
Latex:
\mforall{}[n,m:\mBbbN{}]. \mforall{}[a:\mBbbN{}n + 1 {}\mrightarrow{} \mBbbR{}]. \mforall{}[b:\mBbbN{}m + 1 {}\mrightarrow{} \mBbbR{}]. \mforall{}[x:\mBbbR{}].
((\mSigma{}i\mleq{}n. a\_i * x\^{}i) - (\mSigma{}i\mleq{}m. b\_i * x\^{}i))
= (\mSigma{}i\mleq{}n. \mlambda{}i.if i \mleq{}z m then (a i) - b i else a i fi \_i * x\^{}i)
supposing m \mleq{} n
Date html generated:
2019_10_29-AM-10_14_17
Last ObjectModification:
2019_01_06-PM-05_23_52
Theory : reals
Home
Index