Nuprl Lemma : derivative-cosh
d(cosh(x))/dx = λx.sinh(x) on (-∞, ∞)
Proof
Definitions occuring in Statement : 
sinh: sinh(x), 
cosh: cosh(x), 
derivative: d(f[x])/dx = λz.g[z] on I, 
riiint: (-∞, ∞)
Definitions unfolded in proof : 
sinh: sinh(x), 
cosh: cosh(x), 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
prop: ℙ, 
rfun: I ⟶ℝ, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
sq_type: SQType(T), 
false: False, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
derivative-rexp-fun2, 
rminus_wf, 
real_wf, 
int-to-real_wf, 
req_weakening, 
req_wf, 
derivative-rminus, 
riiint_wf, 
rexp_wf, 
i-member_wf, 
rmul_wf, 
set_wf, 
rmul_comm, 
derivative_functionality, 
rdiv_wf, 
rless-int, 
rless_wf, 
radd_wf, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
expr_wf, 
rsub_wf, 
rmul_preserves_req, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
minus-one-mul, 
itermMinus_wf, 
derivative-const-mul, 
derivative-add, 
derivative-rexp, 
req_functionality, 
req_transitivity, 
int-rdiv-req, 
rdiv_functionality, 
radd_functionality, 
expr-req, 
rmul-rinv3, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
rsub_functionality, 
int-rinv-cancel, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
inrFormation, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
applyEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality
Latex:
d(cosh(x))/dx  =  \mlambda{}x.sinh(x)  on  (-\minfty{},  \minfty{})
Date html generated:
2017_10_04-PM-10_47_06
Last ObjectModification:
2017_06_24-PM-00_22_26
Theory : reals_2
Home
Index