Nuprl Lemma : subtype-corec1
∀[F:Type ⟶ Type]. ∀[T:Type]. T ⊆r corec(T.F[T]) supposing T ⊆r F[T] supposing Monotone(T.F[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T]), 
type-monotone: Monotone(T.F[T]), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
corec: corec(T.F[T]), 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
all: ∀x:A. B[x], 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
type-monotone: Monotone(T.F[T]), 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_wf, 
subtype_rel_wf, 
type-monotone_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
primrec_wf, 
not-le-2, 
not-equal-2, 
le_wf, 
top_wf, 
int_seg_wf, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
isect_memberEquality, 
hypothesisEquality, 
applyEquality, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
axiomEquality, 
isectElimination, 
cumulativity, 
functionExtensionality, 
universeEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
voidEquality, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
intEquality, 
minusEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
dependent_set_memberEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[T:Type].  T  \msubseteq{}r  corec(T.F[T])  supposing  T  \msubseteq{}r  F[T]  supposing  Monotone(T.F[T])
Date html generated:
2017_04_14-AM-07_46_54
Last ObjectModification:
2017_02_27-PM-03_18_09
Theory : co-recursion
Home
Index