Nuprl Lemma : monotone-bar-induction-strict

[B,Q:n:ℕ ⟶ {s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)}  ⟶ ℙ].
  ((∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .
      (B[n;s]  (∀m:ℕ(strictly-increasing-seq(n 1;s.m@n)  B[n 1;s.m@n]))))
   (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .  (B[n;s]  (↓Q[n;s])))
   (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .
        ((∀m:ℕ(strictly-increasing-seq(n 1;s.m@n)  (↓Q[n 1;s.m@n])))  (↓Q[n;s])))
   (∀alpha:StrictInc. ∃m:ℕB[m;alpha])
   (↓Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n int_seg: {i..j-} nat: bottom: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B all: x:A. B[x] so_apply: x[s] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2y.t[x; y] strictly-increasing-seq: strictly-increasing-seq(n;s) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b seq-add: s.x@n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  true: True less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q strict-inc: StrictInc
Lemmas referenced :  all_wf strict-inc_wf exists_wf nat_wf strict-inc-subtype int_seg_wf strictly-increasing-seq_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf seq-add_wf squash_wf monotone-bar-induction1 int_seg_properties intformless_wf int_formula_prop_less_lemma decidable__lt lelt_wf less_than_wf true_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__strictly-increasing-seq make-strict_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self make-strict-agrees iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination lambdaEquality applyEquality functionExtensionality dependent_functionElimination setEquality functionEquality natural_numberEquality setElimination rename because_Cache dependent_set_memberEquality addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality cumulativity independent_functionElimination productElimination hyp_replacement equalitySymmetry equalityTransitivity equalityElimination int_eqReduceTrueSq promote_hyp instantiate int_eqReduceFalseSq applyLambdaEquality

Latex:
\mforall{}[B,Q:n:\mBbbN{}  {}\mrightarrow{}  \{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}    {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
            (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  B[n  +  1;s.m@n]))))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .    (B[n;s]  {}\mRightarrow{}  (\mdownarrow{}Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
                ((\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  (\mdownarrow{}Q[n  +  1;s.m@n])))  {}\mRightarrow{}  (\mdownarrow{}Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:StrictInc.  \mexists{}m:\mBbbN{}.  B[m;alpha])
    {}\mRightarrow{}  (\mdownarrow{}Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2017_04_20-AM-07_23_29
Last ObjectModification: 2017_02_27-PM-05_58_56

Theory : continuity


Home Index