Nuprl Lemma : strong-continuity-test-bound_wf
∀[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕn].  (strong-continuity-test-bound(M;n;f;b) ∈ ℕn?)
Proof
Definitions occuring in Statement : 
strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
union: left + right, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b), 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
exposed-it: exposed-it, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
int_seg_wf, 
nat_wf, 
unit_wf2, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
primrec0_lemma, 
int_seg_properties, 
primrec-unroll-1, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
isl_wf, 
le_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
primrec_wf, 
int_seg_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
cumulativity, 
unionEquality, 
universeEquality, 
isect_memberFormation, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
intWeakElimination, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
unionElimination, 
inrEquality, 
productElimination, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
inlEquality, 
applyEquality, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}n?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}n].
    (strong-continuity-test-bound(M;n;f;b)  \mmember{}  \mBbbN{}n?)
Date html generated:
2017_04_17-AM-10_00_35
Last ObjectModification:
2017_02_27-PM-05_53_04
Theory : continuity
Home
Index