Nuprl Lemma : strong-continuity-test-bound_wf

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕn].  (strong-continuity-test-bound(M;n;f;b) ∈ ℕn?)


Proof




Definitions occuring in Statement :  strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) int_seg: {i..j-} nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  int_seg_wf nat_wf unit_wf2 nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec0_lemma int_seg_properties primrec-unroll-1 lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eq_int_wf assert_of_eq_int neg_assert_of_eq_int isl_wf le_wf subtype_rel_dep_function int_seg_subtype false_wf primrec_wf int_seg_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis because_Cache functionEquality cumulativity unionEquality universeEquality isect_memberFormation sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intWeakElimination lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination inrEquality productElimination dependent_set_memberEquality equalityElimination promote_hyp instantiate inlEquality applyEquality functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}n?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}n].
    (strong-continuity-test-bound(M;n;f;b)  \mmember{}  \mBbbN{}n?)



Date html generated: 2017_04_17-AM-10_00_35
Last ObjectModification: 2017_02_27-PM-05_53_04

Theory : continuity


Home Index