Nuprl Lemma : length_segment

[T:Type]. ∀[as:T List]. ∀[i:{0...||as||}]. ∀[j:{i...||as||}].  (||as[i..j-]|| (j i) ∈ ℤ)


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| list: List int_iseg: {i...j} uall: [x:A]. B[x] subtract: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] int_iseg: {i...j} segment: as[m..n-] and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B subtract: m top: Top uiff: uiff(P;Q) nat_plus: + less_than: a < b less_than': less_than'(a;b) not: ¬A false: False decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  int_iseg_wf length_wf list_wf length_firstn nth_tl_wf subtract_wf non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base equal_wf squash_wf true_wf length_nth_tl iff_weakening_equal minus-one-mul add-commutes not-le-2 add_functionality_wrt_le le_reflexive minus-one-mul-top add-associates minus-zero add-zero one-mul zero-add add-swap add-mul-special zero-mul two-mul mul-distributes-right omega-shadow less_than_wf mul-distributes mul-associates le-add-cancel add-is-int-iff minus-add mul-commutes le-add-cancel-alt int_iseg_properties nat_properties decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis cumulativity because_Cache natural_numberEquality universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality dependent_set_memberEquality lambdaFormation dependent_pairFormation sqequalIntensionalEquality applyEquality intEquality lambdaEquality independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination promote_hyp independent_pairFormation imageElimination imageMemberEquality baseClosed productEquality voidElimination voidEquality addEquality multiplyEquality minusEquality baseApply closedConclusion unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[i:\{0...||as||\}].  \mforall{}[j:\{i...||as||\}].    (||as[i..j\msupminus{}]||  =  (j  -  i))



Date html generated: 2017_04_14-AM-08_47_46
Last ObjectModification: 2017_02_27-PM-03_34_47

Theory : list_0


Home Index