Nuprl Lemma : cycle-as-flips

n:ℕ. ∀L:ℕList.  ∃flips:(ℕn × ℕn) List. (cycle(L) compose-flips(flips) ∈ (ℕn ⟶ ℕn)) supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  compose-flips: compose-flips(flips) cycle: cycle(L) no_repeats: no_repeats(T;l) list: List int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q exists: x:A. B[x] cycle: cycle(L) ifthenelse: if then else fi  null: null(as) nil: [] it: btrue: tt compose-flips: compose-flips(flips) reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) or: P ∨ Q cons: [a b] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bfalse: ff let: let bool: 𝔹 unit: Unit uiff: uiff(P;Q) and: P ∧ Q guard: {T} int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A sq_type: SQType(T) bnot: ¬bb assert: b le: A ≤ B squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction int_seg_wf isect_wf no_repeats_wf exists_wf list_wf equal_wf cycle_wf compose-flips_wf no_repeats_witness nil_wf cons_wf nat_wf equal-wf-base-T list-cases product_subtype_list null_cons_lemma reduce_hd_cons_lemma list_ind_cons_lemma null_nil_lemma list_ind_nil_lemma map_nil_lemma reduce_nil_lemma eqtt_to_assert assert_of_eq_int int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf eqff_to_assert bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int cycle-flip-lemma length_of_cons_lemma non_neg_length length_wf itermAdd_wf int_term_value_add_lemma reduce_tl_cons_lemma no_repeats_cons map_cons_lemma reduce_cons_lemma squash_wf true_wf compose_wf flip_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality hypothesisEquality productEquality functionEquality dependent_functionElimination independent_functionElimination isect_memberFormation dependent_pairFormation functionExtensionality baseClosed unionElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality equalityElimination independent_isectElimination int_eqEquality intEquality independent_pairFormation computeAll dependent_set_memberEquality equalitySymmetry equalityTransitivity instantiate addEquality independent_pairEquality applyEquality imageElimination universeEquality cumulativity imageMemberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:\mBbbN{}n  List.
    \mexists{}flips:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.  (cycle(L)  =  compose-flips(flips))  supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2017_04_17-AM-08_20_33
Last ObjectModification: 2017_02_27-PM-04_43_22

Theory : list_1


Home Index