Nuprl Lemma : flip_bijection

k:ℕ. ∀i,j:ℕk.  Bij(ℕk;ℕk;(i, j))


Proof




Definitions occuring in Statement :  flip: (i, j) biject: Bij(A;B;f) int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  biject: Bij(A;B;f) surject: Surj(A;B;f) inject: Inj(A;B;f) all: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] nat: so_apply: x[s] uimplies: supposing a flip: (i, j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q squash: T true: True
Lemmas referenced :  flip_wf set_subtype_base lelt_wf istype-int int_subtype_base int_seg_wf nat_wf eq_int_wf eqtt_to_assert assert_of_eq_int int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma le_wf less_than_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int iff_imp_equal_bool bfalse_wf iff_functionality_wrt_iff assert_wf equal-wf-base false_wf iff_weakening_uiff iff_weakening_equal squash_wf true_wf equal_wf istype-universe eq_int_eq_true btrue_wf ifthenelse_wf assert_elim bnot_wf subtype_rel_self btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  cut hypothesis Error :equalityIsType4,  Error :inhabitedIsType,  hypothesisEquality applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality Error :lambdaEquality_alt,  natural_numberEquality setElimination rename because_Cache independent_isectElimination independent_pairFormation Error :universeIsType,  unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination applyLambdaEquality dependent_functionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :equalityIsType2,  baseApply closedConclusion baseClosed promote_hyp instantiate cumulativity Error :equalityIsType1,  imageElimination imageMemberEquality universeEquality Error :equalityIsType3

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}i,j:\mBbbN{}k.    Bij(\mBbbN{}k;\mBbbN{}k;(i,  j))



Date html generated: 2019_06_20-PM-01_36_05
Last ObjectModification: 2018_10_05-PM-02_47_59

Theory : list_1


Home Index