Nuprl Lemma : flip_bijection
∀k:ℕ. ∀i,j:ℕk.  Bij(ℕk;ℕk;(i, j))
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
biject: Bij(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
flip: (i, j)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
flip_wf, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
int_seg_wf, 
nat_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
le_wf, 
less_than_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
iff_imp_equal_bool, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
equal-wf-base, 
false_wf, 
iff_weakening_uiff, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
eq_int_eq_true, 
btrue_wf, 
ifthenelse_wf, 
assert_elim, 
bnot_wf, 
subtype_rel_self, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
cut, 
hypothesis, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
Error :universeIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
applyLambdaEquality, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :equalityIsType1, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
Error :equalityIsType3
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}i,j:\mBbbN{}k.    Bij(\mBbbN{}k;\mBbbN{}k;(i,  j))
Date html generated:
2019_06_20-PM-01_36_05
Last ObjectModification:
2018_10_05-PM-02_47_59
Theory : list_1
Home
Index