Nuprl Lemma : list-at-combine-skips

[ms,ns:colist(ℕ)]. ∀[k:ℕ]. ∀[T:Type]. ∀[L:colist(T)].  (L@combine-skips(ns;ms;k) nth_tl(k;L)@ns@ms ∈ colist(T))


Proof




Definitions occuring in Statement :  combine-skips: combine-skips(as;bs;n) list-at: L1@L2 nth_tl: nth_tl(n;as) colist: colist(T) nat: uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T colist: colist(T) corec: corec(T.F[T]) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q ext-eq: A ≡ B subtype_rel: A ⊆B nil: [] combine-skips: combine-skips(as;bs;n) b-union: A ⋃ B tunion: x:A.B[x] decidable: Dec(P) pi2: snd(t) cons: [a b] list-at: L1@L2 null: null(as) nth_tl: nth_tl(n;as) le_int: i ≤j squash: T true: True co-nil: () so_lambda: λ2x.t[x] so_apply: x[s] tl: tl(l) co-cons: [x L]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec-unroll colist_wf istype-universe istype-nat nat_wf subtract-1-ge-0 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf colist-ext isaxiom_wf_listunion subtype_rel_b-union-left unit_wf2 axiom-listunion null_nil_lemma reduce_tl_nil_lemma list_at_nil2_lemma btrue_wf it_wf ifthenelse_wf primrec_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma istype-le top_wf b-union_wf int_seg_wf subtype_rel_b-union-right non-axiom-listunion null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma intformeq_wf int_formula_prop_eq_lemma int_subtype_base add-zero nth_tl_nil bfalse_wf equal_wf squash_wf true_wf list-at_wf subtype_rel_self iff_weakening_equal le_int_wf assert_of_le_int le_wf co-nil_wf itermAdd_wf int_term_value_add_lemma set_subtype_base decidable__equal_int nil-at co-cons_wf subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :isect_memberEquality_alt,  thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  because_Cache instantiate universeEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination Error :equalityIstype,  promote_hyp cumulativity hypothesis_subsumption applyEquality productEquality imageMemberEquality Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  baseClosed sqequalBase int_eqReduceFalseSq Error :isectIsTypeImplies,  independent_pairEquality imageElimination Error :isectIsType,  baseApply closedConclusion intEquality axiomSqEquality addEquality

Latex:
\mforall{}[ms,ns:colist(\mBbbN{})].  \mforall{}[k:\mBbbN{}].  \mforall{}[T:Type].  \mforall{}[L:colist(T)].
    (L@combine-skips(ns;ms;k)  =  nth\_tl(k;L)@ns@ms)



Date html generated: 2019_06_20-PM-01_21_43
Last ObjectModification: 2018_12_07-PM-06_27_53

Theory : list_1


Home Index