Nuprl Lemma : list_ind_reverse_wf_dependent
∀[A,B:Type].
  ∀nilcase:B. ∀F:B ⟶ (A List) ⟶ A ⟶ B. ∀P:(A List) ⟶ B ⟶ ℙ.
    ((P [] nilcase)
    
⇒ (∀L:A List. ∀x:A. ∀b:B.  ((b = list_ind_reverse(L;nilcase;F) ∈ B) 
⇒ (P L b) 
⇒ (P (L @ [x]) (F b L x))))
    
⇒ (∀L:A List. (P L list_ind_reverse(L;nilcase;F))))
Proof
Definitions occuring in Statement : 
list_ind_reverse: list_ind_reverse(L;nilcase;R)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
list_ind_reverse: list_ind_reverse(L;nilcase;R)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
int_iseg: {i...j}
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
true: True
, 
firstn: firstn(n;as)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
append: as @ bs
, 
cons: [a / b]
Lemmas referenced : 
nat_wf, 
list_wf, 
all_wf, 
equal_wf, 
list_ind_reverse_wf, 
append_wf, 
cons_wf, 
nil_wf, 
eq_int_wf, 
length_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
length_wf_nat, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_subtype_base, 
set_wf, 
less_than_wf, 
primrec-wf2, 
length_zero, 
iff_weakening_equal, 
firstn_wf, 
subtract_wf, 
le_wf, 
squash_wf, 
true_wf, 
length_firstn_eq, 
decidable__le, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
length_firstn, 
last_wf, 
non_null_iff_length, 
subtype_rel_list, 
top_wf, 
decidable__lt, 
list-cases, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
null_cons_lemma, 
false_wf, 
firstn_last
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
functionEquality, 
functionExtensionality, 
applyEquality, 
universeEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
baseApply, 
closedConclusion, 
imageElimination, 
dependent_set_memberEquality, 
productEquality, 
imageMemberEquality, 
hypothesis_subsumption, 
hyp_replacement
Latex:
\mforall{}[A,B:Type].
    \mforall{}nilcase:B.  \mforall{}F:B  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  A  {}\mrightarrow{}  B.  \mforall{}P:(A  List)  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.
        ((P  []  nilcase)
        {}\mRightarrow{}  (\mforall{}L:A  List.  \mforall{}x:A.  \mforall{}b:B.
                    ((b  =  list\_ind\_reverse(L;nilcase;F))  {}\mRightarrow{}  (P  L  b)  {}\mRightarrow{}  (P  (L  @  [x])  (F  b  L  x))))
        {}\mRightarrow{}  (\mforall{}L:A  List.  (P  L  list\_ind\_reverse(L;nilcase;F))))
Date html generated:
2017_04_17-AM-08_44_05
Last ObjectModification:
2017_02_27-PM-05_03_06
Theory : list_1
Home
Index