Nuprl Lemma : pairwise-mapl
∀[T,T':Type].
  ∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ T'.
    ∀[P:T' ⟶ T' ⟶ ℙ']. ((∀x,y:T.  ((x ∈ L) 
⇒ (y ∈ L) 
⇒ P[f x;f y])) 
⇒ (∀x,y∈mapl(f;L).  P[x;y]))
Proof
Definitions occuring in Statement : 
mapl: mapl(f;l)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
cons: [a / b]
, 
select: L[n]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
l_member: (x ∈ l)
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
mapl: mapl(f;l)
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_sets_simple, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
nat_properties, 
select_wf, 
length_wf, 
false_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
intformand_wf, 
add-is-int-iff, 
nat_plus_properties, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
length_wf_nat, 
add_nat_plus, 
length_of_cons_lemma, 
istype-le, 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
istype-void, 
l_all_iff, 
subtype_rel_self, 
list_induction, 
all_wf, 
l_member_wf, 
uall_wf, 
pairwise_wf2, 
mapl_wf, 
list_wf, 
map_nil_lemma, 
pairwise-nil, 
nil_wf, 
map_cons_lemma, 
pairwise-cons, 
cons_wf, 
cons_member, 
subtype_rel_dep_function, 
subtype_rel_sets, 
equal_wf, 
set_wf
Rules used in proof : 
hyp_replacement, 
inrFormation_alt, 
int_eqEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
applyLambdaEquality, 
approximateComputation, 
unionElimination, 
dependent_pairFormation_alt, 
productIsType, 
isect_memberEquality_alt, 
productEquality, 
equalityIstype, 
setIsType, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
universeIsType, 
inhabitedIsType, 
functionIsType, 
lambdaFormation_alt, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
universeEquality, 
setElimination, 
rename, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
natural_numberEquality, 
inlFormation, 
independent_isectElimination, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation
Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T'.
        \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  P[f  x;f  y]))  {}\mRightarrow{}  (\mforall{}x,y\mmember{}mapl(f;L).    P[x;y]))
Date html generated:
2019_10_15-AM-10_23_20
Last ObjectModification:
2019_09_24-PM-06_05_38
Theory : list_1
Home
Index