Nuprl Lemma : pairwise-mapl

[T,T':Type].
  ∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ T'.
    ∀[P:T' ⟶ T' ⟶ ℙ']. ((∀x,y:T.  ((x ∈ L)  (y ∈ L)  P[f x;f y]))  (∀x,y∈mapl(f;L).  P[x;y]))


Proof




Definitions occuring in Statement :  mapl: mapl(f;l) pairwise: (∀x,y∈L.  P[x; y]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ge: i ≥  uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nat_plus: + cons: [a b] select: L[n] less_than': less_than'(a;b) le: A ≤ B nat: l_member: (x ∈ l) false: False not: ¬A exists: x:A. B[x] uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: implies:  Q so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2y.t[x; y] mapl: mapl(f;l) top: Top iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True or: P ∨ Q uimplies: supposing a guard: {T} cand: c∧ B
Lemmas referenced :  subtype_rel_sets_simple int_formula_prop_le_lemma intformle_wf decidable__le nat_properties select_wf length_wf false_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf intformand_wf add-is-int-iff nat_plus_properties istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt length_wf_nat add_nat_plus length_of_cons_lemma istype-le btrue_neq_bfalse member-implies-null-eq-bfalse btrue_wf null_nil_lemma istype-void l_all_iff subtype_rel_self list_induction all_wf l_member_wf uall_wf pairwise_wf2 mapl_wf list_wf map_nil_lemma pairwise-nil nil_wf map_cons_lemma pairwise-cons cons_wf cons_member subtype_rel_dep_function subtype_rel_sets equal_wf set_wf
Rules used in proof :  hyp_replacement inrFormation_alt int_eqEquality baseClosed closedConclusion baseApply promote_hyp pointwiseFunctionality applyLambdaEquality approximateComputation unionElimination dependent_pairFormation_alt productIsType isect_memberEquality_alt productEquality equalityIstype setIsType lambdaEquality_alt dependent_set_memberEquality_alt universeIsType inhabitedIsType functionIsType lambdaFormation_alt sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality setEquality because_Cache hypothesis applyEquality universeEquality setElimination rename functionExtensionality dependent_set_memberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination natural_numberEquality inlFormation independent_isectElimination inrFormation equalityTransitivity equalitySymmetry independent_pairFormation

Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T'.
        \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  P[f  x;f  y]))  {}\mRightarrow{}  (\mforall{}x,y\mmember{}mapl(f;L).    P[x;y]))



Date html generated: 2019_10_15-AM-10_23_20
Last ObjectModification: 2019_09_24-PM-06_05_38

Theory : list_1


Home Index