Nuprl Lemma : unshuffle-iseg

[T:Type]. ∀as,bs:T List.  (as ≤ bs  unshuffle(as) ≤ unshuffle(bs))


Proof




Definitions occuring in Statement :  unshuffle: unshuffle(L) iseg: l1 ≤ l2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] unshuffle: unshuffle(L) lt_int: i <j ifthenelse: if then else fi  btrue: tt cons: [a b] iff: ⇐⇒ Q assert: b bfalse: ff bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb rev_implies:  Q cand: c∧ B
Lemmas referenced :  int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf length_wf non_neg_length nat_properties decidable__lt lelt_wf less_than_wf iseg_wf all_wf list_wf unshuffle_wf set_wf primrec-wf2 nat_wf itermAdd_wf int_term_value_add_lemma length_wf_nat list-cases length_of_nil_lemma reduce_tl_nil_lemma nil_iseg product_subtype_list iseg_nil cons_wf null_cons_lemma cons_iseg length_of_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int iseg_weakening nil_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll unionElimination addLevel applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality cumulativity imageElimination independent_functionElimination functionEquality productEquality addEquality universeEquality promote_hyp equalityElimination instantiate independent_pairEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    (as  \mleq{}  bs  {}\mRightarrow{}  unshuffle(as)  \mleq{}  unshuffle(bs))



Date html generated: 2017_04_17-AM-08_58_11
Last ObjectModification: 2017_02_27-PM-05_13_25

Theory : list_1


Home Index