Nuprl Lemma : code-coded-seq
∀x:ℕ. (let k,s = coded-seq(x) in code-seq(k;s) = x ∈ ℤ)
Proof
Definitions occuring in Statement : 
coded-seq: coded-seq(x)
, 
code-seq: code-seq(k;s)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
spread: spread def, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
coded-seq: coded-seq(x)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
code-seq: code-seq(k;s)
, 
eq_int: (i =z j)
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
label: ...$L... t
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
nat_properties, 
nequal-le-implies, 
zero-add, 
nat_wf, 
int_subtype_base, 
coded-pair_wf, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
add-subtract-cancel, 
code-coded-seq1, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
decidable__equal_int, 
coded-code-pair, 
code-pair_wf, 
squash_wf, 
true_wf, 
code-coded-pair, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
independent_pairFormation, 
intEquality, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
productEquality, 
addEquality, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
minusEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}x:\mBbbN{}.  (let  k,s  =  coded-seq(x)  in  code-seq(k;s)  =  x)
Date html generated:
2019_06_20-PM-02_40_36
Last ObjectModification:
2019_06_12-PM-00_28_33
Theory : num_thy_1
Home
Index