Nuprl Lemma : code-coded-seq1
∀[k:ℕ+]. ∀[x:ℕ].  (code-seq1(k;λn.coded-seq1(k - 1;x;n)) = x ∈ ℤ)
Proof
Definitions occuring in Statement : 
coded-seq1: coded-seq1(k;x;n)
, 
code-seq1: code-seq1(k;s)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
code-seq1: code-seq1(k;s)
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
coded-seq1: coded-seq1(k;x;n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
so_lambda: λ2x.t[x]
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
label: ...$L... t
, 
true: True
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_wf, 
nat_plus_properties, 
add-subtract-cancel, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
coded-pair_wf, 
uall_wf, 
code-seq1_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
le_wf, 
coded-seq1_wf, 
subtract_wf, 
int_seg_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtract-add-cancel, 
decidable__lt, 
lelt_wf, 
int_seg_wf, 
nat_plus_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
primrec-unroll, 
lt_int_wf, 
assert_of_lt_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
less_than_wf, 
decidable__equal_int, 
int_subtype_base, 
coded-code-pair, 
code-pair_wf, 
squash_wf, 
true_wf, 
code-coded-pair, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
extract_by_obid, 
lambdaFormation, 
isectElimination, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache, 
productEquality, 
dependent_set_memberEquality, 
addEquality, 
applyEquality, 
axiomEquality, 
hyp_replacement, 
applyLambdaEquality, 
functionExtensionality, 
spreadEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbN{}].    (code-seq1(k;\mlambda{}n.coded-seq1(k  -  1;x;n))  =  x)
Date html generated:
2019_06_20-PM-02_40_06
Last ObjectModification:
2019_06_12-PM-00_28_09
Theory : num_thy_1
Home
Index