Nuprl Lemma : lsum-of-even

[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].  ↑isEven(Σ(f[x] x ∈ L)) supposing (∀x∈L.↑isEven(f[x]))


Proof




Definitions occuring in Statement :  isEven: isEven(n) lsum: Σ(f[x] x ∈ L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] assert: b ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m btrue: tt true: True subtype_rel: A ⊆B cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) select: L[n] cand: c∧ B nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) same-parity: same-parity(n;m) bool: 𝔹 unit: Unit bfalse: ff bnot: ¬bb
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than assert_witness intformeq_wf int_formula_prop_eq_lemma list-cases lsum_nil_lemma isEven_wf l_all_wf_nil assert_wf l_member_wf nil_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-le lsum_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf lsum_cons_lemma subtype_rel_dep_function cons_wf subtype_rel_sets_simple cons_member l_all_cons length_of_cons_lemma add_nat_plus length_wf_nat decidable__lt nat_plus_properties add-is-int-iff false_wf length_wf select_wf list-subtype subtype_rel_list subtype_rel_sets l_all_wf istype-nat list_wf istype-universe isEven-add eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType equalityTransitivity equalitySymmetry applyLambdaEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination applyEquality dependent_set_memberEquality_alt because_Cache functionIsType setIsType promote_hyp hypothesis_subsumption productElimination equalityIstype instantiate imageElimination baseApply closedConclusion baseClosed intEquality sqequalBase setEquality inrFormation_alt pointwiseFunctionality productIsType addEquality universeEquality equalityElimination cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    \muparrow{}isEven(\mSigma{}(f[x]  |  x  \mmember{}  L))  supposing  (\mforall{}x\mmember{}L.\muparrow{}isEven(f[x]))



Date html generated: 2020_05_19-PM-10_01_34
Last ObjectModification: 2019_11_13-AM-10_10_24

Theory : num_thy_1


Home Index