Nuprl Lemma : rel-comp-exp

[T:Type]. ∀[R,S:T ⟶ T ⟶ ℙ].  ∀n:ℕ(R S)^n ⇐⇒ if (n =z 0) then λx,y. (x y ∈ T) else (R ((S R)^n S)) fi\000C 


Proof




Definitions occuring in Statement :  rel-comp: (R1 R2) rel_equivalent: R1 ⇐⇒ R2 rel_exp: R^n nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] prop: all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt implies:  Q member: t ∈ T nat: and: P ∧ Q less_than: a < b squash: T cand: c∧ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a top: Top le: A ≤ B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  prop: so_lambda: λ2x.t[x] ge: i ≥  int_upper: {i...} subtype_rel: A ⊆B sq_stable: SqStable(P) so_apply: x[s] rel_equivalent: R1 ⇐⇒ R2 infix_ap: y rel-comp: (R1 R2)
Lemmas referenced :  rel_equivalent_wf rel_exp_wf subtract_wf decidable__le istype-false not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top istype-void minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel istype-le rel-comp_wf eq_int_wf eqtt_to_assert assert_of_eq_int equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not-equal-2 minus-zero le-add-cancel-alt istype-int istype-less_than primrec-wf2 upper_subtype_nat nat_properties nequal-le-implies sq_stable__le istype-nat istype-universe less_than_transitivity1 le_weakening less_than_irreflexivity subtype_rel_self le-add-cancel2 infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin sqequalRule rename setElimination Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality Error :dependent_set_memberEquality_alt,  natural_numberEquality hypothesis independent_pairFormation imageElimination productElimination dependent_functionElimination unionElimination voidElimination independent_functionElimination independent_isectElimination addEquality Error :isect_memberEquality_alt,  minusEquality because_Cache closedConclusion Error :inhabitedIsType,  equalityElimination Error :lambdaEquality_alt,  equalityTransitivity equalitySymmetry Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp instantiate cumulativity Error :setIsType,  hypothesis_subsumption applyEquality imageMemberEquality baseClosed Error :functionIsType,  universeEquality independent_pairEquality axiomEquality Error :functionIsTypeImplies,  Error :productIsType,  hyp_replacement applyLambdaEquality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,S:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}n:\mBbbN{}.  (R  o  S)\^{}n  \mLeftarrow{}{}\mRightarrow{}  if  (n  =\msubz{}  0)  then  \mlambda{}x,y.  (x  =  y)  else  (R  o  (rel\_exp(T;  (S  o  R);  n  -  1)  o  S))  fi 



Date html generated: 2019_06_20-PM-00_31_22
Last ObjectModification: 2019_03_27-PM-01_28_36

Theory : relations


Home Index