Nuprl Lemma : bag-filter-empty-iff

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[b:bag(T)].  uiff(∀x:T. (x ↓∈  (¬↑P[x]));↑bag-null([x∈b|P[x]]))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-null: bag-null(bs) bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] empty-bag: {} bag-null: bag-null(bs) null: null(as) bag-filter: [x∈b|p[x]] filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: btrue: tt assert: b ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True false: False not: ¬A cons-bag: x.b top: Top bool: 𝔹 unit: Unit cons: [a b] bfalse: ff sq_or: a ↓∨ b or: P ∨ Q subtype_rel: A ⊆B squash: T exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb rev_implies:  Q iff: ⇐⇒ Q sq_stable: SqStable(P)
Lemmas referenced :  all_wf bag-member_wf not_wf assert_wf bag-null_wf bag-filter_wf squash_wf false_wf true_wf bag-member-empty-iff empty-bag_wf uiff_wf bag_filter_cons_lemma bool_wf eqtt_to_assert list-subtype-bag eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sq_or_wf iff_weakening_uiff rev_implies_wf assert_witness bag-member-cons cons-bag_wf bag_wf bag_to_squash_list sq_stable__uiff sq_stable__all sq_stable__not sq_stable_from_decidable decidable__assert list_induction list_wf assert_elim and_wf not_assert_elim btrue_neq_bfalse
Rules used in proof :  because_Cache sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity sqequalRule lambdaEquality functionEquality hypothesis applyEquality functionExtensionality dependent_functionElimination setEquality independent_pairFormation isect_memberFormation natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation voidElimination addLevel productElimination independent_isectElimination allFunctionality independent_functionElimination isect_memberEquality voidEquality unionElimination equalityElimination inlFormation imageMemberEquality baseClosed dependent_pairFormation promote_hyp instantiate inrFormation dependent_set_memberEquality universeEquality independent_pairEquality imageElimination rename hyp_replacement applyLambdaEquality levelHypothesis setElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:bag(T)].    uiff(\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\mneg{}\muparrow{}P[x]));\muparrow{}bag-null([x\mmember{}b|P[x]]))



Date html generated: 2017_10_01-AM-08_56_15
Last ObjectModification: 2017_07_26-PM-04_38_16

Theory : bags


Home Index