Nuprl Lemma : bag-map-as-accum
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[bs:bag(A)]. (bag-map(f;bs) = bag-accum(b,x.f[x].b;{};bs) ∈ bag(B))
Proof
Definitions occuring in Statement :
bag-accum: bag-accum(v,x.f[v; x];init;bs)
,
bag-map: bag-map(f;bs)
,
cons-bag: x.b
,
empty-bag: {}
,
bag: bag(T)
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
bag-accum: bag-accum(v,x.f[v; x];init;bs)
,
list_accum: list_accum,
nil: []
,
it: ⋅
,
empty-bag: {}
,
bag-map: bag-map(f;bs)
,
map: map(f;as)
,
list_ind: list_ind,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
less_than': less_than'(a;b)
,
cons-bag: x.b
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
bag-append: as + bs
Lemmas referenced :
bag_to_squash_list,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
list_wf,
list-cases,
bag-map_wf,
nil_wf,
list-subtype-bag,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
equal_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
bag-map-cons,
cons-bag-as-append,
bag-append-comm,
single-bag_wf,
bag_wf,
cons-bag_wf,
bag-accum_wf,
empty-bag_wf,
bag-append_wf,
iff_weakening_equal,
bag-append-assoc-comm,
list_accum_append,
subtype_rel_list,
top_wf,
squash_wf,
true_wf,
all_wf,
bag-append-assoc,
bag-accum-single
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
imageElimination,
productElimination,
promote_hyp,
hypothesis,
rename,
lambdaFormation,
setElimination,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
cumulativity,
applyEquality,
unionElimination,
hypothesis_subsumption,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
baseClosed,
instantiate,
hyp_replacement,
functionExtensionality,
functionEquality,
universeEquality,
imageMemberEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[f:A {}\mrightarrow{} B]. \mforall{}[bs:bag(A)]. (bag-map(f;bs) = bag-accum(b,x.f[x].b;\{\};bs))
Date html generated:
2017_10_01-AM-08_48_16
Last ObjectModification:
2017_07_26-PM-04_32_28
Theory : bags
Home
Index