Nuprl Lemma : bag-maximal?-iff

[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x:T].  uiff(↑bag-maximal?(b;x;R);∀y:T. (y ↓∈  (↑(R y))))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-maximal?: bag-maximal?(bg;x;R) bag: bag(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top subtype_rel: A ⊆B guard: {T} or: P ∨ Q bag-maximal?: bag-maximal?(bg;x;R) bag-accum: bag-accum(v,x.f[v; x];init;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) band: p ∧b q true: True sq_stable: SqStable(P) cons-bag: x.b rev_uimplies: rev_uimplies(P;Q) cand: c∧ B sq_or: a ↓∨ b
Lemmas referenced :  bag-maximal?-max bag-member_wf assert_witness assert_wf bag-maximal?_wf all_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-subtype-bag intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases list_accum_nil_lemma true_wf nil_wf product_subtype_list spread_cons_lemma itermAdd_wf int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_accum_cons_lemma list_accum_wf bool_wf band_wf cons_wf member_wf btrue_wf list_induction bag_wf bag_to_squash_list sq_stable_from_decidable decidable__assert bag-maximal?-cons bag-member-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis cumulativity sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination functionExtensionality applyEquality functionEquality setElimination rename intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination promote_hyp hypothesis_subsumption productElimination dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality independent_pairEquality hyp_replacement imageMemberEquality inrFormation inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].
    uiff(\muparrow{}bag-maximal?(b;x;R);\mforall{}y:T.  (y  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}(R  x  y))))



Date html generated: 2017_10_01-AM-08_58_57
Last ObjectModification: 2017_07_26-PM-04_40_49

Theory : bags


Home Index